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ABSTRACT OF THE DISSERTATION

COMPUTATION OF TURBULENT RECIRCULATING FLOW

1N CHANNELS, AND FOR IMPINGEMENT COOLING

by

Byong Hoon Chang

doctor of philosophy in Mechanical Engineering

University of California, Los Angeles, 1992.

ProfessorAnthony F. Mills, Chair

Fully elliptic forms of the transport equationshave beensolved numerically

for two flow configurations. The first is turbulent flow in a channel with

transverserectangular ribs, and the secondis impingement cooling of a plane

surface. Both flows are relevant to proposed designs for active cooling of

hypersonic vehicles using supercritical hydrogen as the coolant. Flow down-

stream of an abrupt pipe expansion and of a backward-facing step were also

solved with various near-wall turbulence models as benchmark problems. A

simple form of periodicity boundary condition was used for the channel flow

with transverse rectangular ribs. The effects of various parameters on heat

transfer in channel flow with transverse ribs and in impingement cooling were

investigated using the Yap modified Jones and Launder low Reynolds number

k- e turbulence model. For the channel flow, predictions were in adequate

XV



agreement with experiment for constant property flow, with the results for

friction superior to those for heat transfer. For impingement cooling, the

agreement with experiment was generally good, but the results suggest that

improved modelling of the dissipation rate of turbulence kinetic energy is re-

quired in order to obtain improved heat transfer prediction, especially near the

stagnation point. The k - e turbulence model was used to predict the mean

flow and heat transfer for constant and variable property flows. The effect of

variable properties for channel flow was investigated using the same turbu-

lence model, but comparison with experiment yielded no clear conclusions.

Also, the wall function method was modified for use in the variable properties

flow with a non-adiabatic surface, and an empirical model is suggested to cor-

rectly account for the behavior of the viscous sublayer with heating.

xvi



Chapter I

INTRODUCTION

1.1 BACKGROUND

Current interest in hypersonic flight has led to renewed activity related to

high temperature structures. A critical problem is to ensure the survivability

of components subjected to intense aerodynamic heating, such as the nose,

wing leading edges, and the engine inlet. Hydrogen-fueled scramjet engines are

under development, and a cooling system which shows considerable promise

is based on the use of the hydrogen fuel as a coolant before it is injected into

the combustor. Engine inlets require panels in which the hydrogen flows

through channels beneath the skin. The use of enhanced surfaces to increase

heat transfer coefficients inside the channels is an attractive option to improve

performance. For the nose, or wing leading edges, impingement cooling is a

possible approach. A jet of hydrogen impinges on the backface of the skin at

the stagnation point or line, and flows rearwards.

Experimental data will certainly be required in order to develop systems

described above. But test work using supercritical hydrogen is both expensive

and hazardous: thus the use of modern computational fluid dynamics(CFD)

methods are an attractive partial alternative. If successful computer models

can be developed, the scope of the experimental program can be reduced ac-

cordingly. The CFD model then becomes a tool for interpolation in, and

modest extrapolation of, the experimental data.



1.2 OBJECTIVES OF THE PRESENT STUDY

There are numerous problems relevant to active cooling, and suitable for

Two problems have been chosen for the present study. TheseCFD modeling.

arc :

1. The development of roughness functions for transverse ribs used to

augment heat transfer in channel flow. These functions will facilitate

the engineering calculation of pressure drop and heat transfer in cooling

panels.

2. Prediction of the flow field and heat transfer rates for two- dimensional

impingement cooling. The results will facilitate the design of the

impingement system as a heat exchanger.

These problems have three important features in common. Firstly, both

involve recirculating flows with flow separations and reattachments. Thus the

elliptic form of the transport equations must be solved. Secondly, both flows

are turbulent, and due to the critical importance of heat transfer near flow re-

attachment points, simple turbulence models, such as the mixing length model,

are inadequate. Thirdly, fluid property variations are large adjacent to the

wall of primary interest. It is therefore necessary to solve the conservation

equations in the near wall region: so called conventional wall functions should

not be used to bridge the region. Hence an essential requirement of this study

is a suitable turbulence model which can be used for recirculating flows with

large property variations.

A mixing-length turbulence model is not suitable for these flows because the

turbulent viscosity and thermal conductivity vanish where the mean velocity

2



gradient is zero; also, the influence of convectionand diffusion on the turbu-

lence kinetic energy are not accounted for. Two-equation models of turbu-

lence are more suitable for theseflows, and many variations have been used

by prior workers. The conventional wall function approach replacesthe near

wall region with formulas basedon the logarithmic velocity and temperature

profiles in order to avoid using a fine grid near the wall. However, unless

special wall functions are developed,which properly account for variable

property effects,a fine grid is required near the wall.

Sinceexperimentaldata for the problemsof interest is sparse,related prob-

lems, namely heat transfer downstreamof a sudden pipe expansion and of a

backward-facing step, will be used as benchmarks to initially test the turbu-

lence model, and the computational technique. These flows have been the

subject of many experimental and numerical studies: there is both a good data

base,and a well documented history of turbulence model development.

1.3 LITERATURE SURVEY

1.3.1 Flow downstream of a sudden pipe expansion

The flow over a backward-facing step or the flow downstream of a sudden

pipe expansion is very complex. It involves recirculating flow, shear layer re-

attachment, a counterrotating secondary vortex in the corner, and boundary

layer redevelopment. According to Eaton and Johnston [i], the length of the

separation region behind the step fluctuates so that the impingement point of



the separatedshearlayer is not stationary. The measured maximum backward

velocity in the recirculating flow region is reported to be usually over 20 % of

the freestream velocity. The k-e two-equation model that determines the

turbulent viscosity from the solution of two transport equations, namely the

turbulent kinetic energy, k, equation and its dissipation rate, E, equation, has

been used by various workers to solve this recirculating flow. The standard

model is applicable only to regions of high Reynolds number, and its use with

wall function approach to bridge the viscous sublayer has been popular in ,or-

der to reduce computing costs. But, a conventional wall function based on the

,_ /Tw

friction velocity, u -N/--7 ' is not appropriate for this flow since the predicted

heat transfer is zero at separation and reattachment points. This deficiency in

the wall function can be removed by adopting the turbulence kinetic energy

as a velocity scale, as proposed by Launder and Spalding [2]. A wall function

approach based on constant non-dimensional viscous sublayer thickness was

attempted by Chieng and Launder [3]. A coding error of Chieng and

Launder was detected by Johnson and Launder [ 4], and a subsequent recal-

culation showed underprediction of Nusselt number for the experimental heat

transfer data of Zemanick and Dougall [ 5]. Johnson and Launder [4] ob-

tained good results by making the nondimensional viscous sublayer thickness

a linear function of the ratio of the rate of turbulence energy diffusion to the

rate of turbulence energy dissipation in the sublayer. Amano [ 6] extended

this two-layer model to a three-layer model by introducing a buffer layer be-

tween the viscous and turbulent regions. The prediction by the three-layer

model compared favorably with the experimental data of Amano et al. [7].



Launder [ 8-] hasmadea critical evaluation of the wall function approach, and

concluded that a more appropriate form of the turbulence energy dissipation

rate equation needs to be established before further refinement of wall func-

tions. Also, the use of wall functions failed to predict the secondary corner

vortex. Baughn et al. [9] have made extensive experimental measurements

of the local heat transfer coefficients to an air flow downstream of an

axisymmetric abrupt expansion in a circular pipe with a constant wall heat

flux. The runs were made with the expansion ratio from 0.267 to 0.8 and o,:er

the Reynolds number range of 5300 to 87000. The maximum Nusselt number

was almost eleven times larger than that for fully developed pipe flow, as

given by the Dittus-Boelter relation, for an expansion ratio of 0.266 based on

pipe diameters, and a downstream Reynolds number of 8,112. Launder [10]

presented a review on the various methods for computing heat transfer coeffi-

cients in complex turbulent flows. A significant improvement in the calcu-

lation of heat transfer rates by Yap [11] was the addition of a source term to

the dissipation rate equation to reduce the excessive turbulence near-wall

length scale. A comparison with Baughn's experimental data showed that the

method of adopting a low Reynolds number k - e model across the sublayer

and an algebraic stress model beyond gave the best heat transfer prediction

with a good Reynolds number dependence. However, the prediction by a low

Reynolds number k - e model with the Yap's correction was fairly good. With

the low Reynolds number k-e model, computations are performed all the

way to the wall, and the algebraic stress model employs a simplified form of

the Reynolds stress transport equations.

5



1.3.2 Flow downstream of a backward-facing step

Aeronautical researchers have long been interested in the flow over a

backward-facing step because of the practical importance of predicting base

pressure of bluff bodies moving with high speed(such as bullets and coasting

missiles) [12]. More work has been done in supersonic flow, but the low speed

flow over a backward-facing step is also used as a building block flow for

workers developing turbulence models [1]. Some of more relevant work in

literature to the present study are listed here.

Eaton and Johnston [1] were among the first to make measurements in the

highly unsteady and reversing flow behind a backward-facing step using a

pulsed-wire anemometer, thermal tuft, and pulsed-wall probe. Turbulence

quantities and the skin friction were measured, and it was found that the tur-

bulence intensity decreases rapidly downstream of reattachment in the rede-

veloping boundary layer with the turbulence actually beginning to decay

upstream of reattachment some one or two step heights. Durst and Tropea

[13] used a water channel to study a backward-facing step flow, acquiring the

data with a laser-doppler anemometer. In their study, they varied the expan-

sion ratio and found a strong dependence of the reattachment length on this

quantity. Driver and Seegmiller [14] acquired wind-tunnel fluid dynamic data

for the backward-facing step using a laser-doppler anemometer. They ob-

tained many of the important turbulence quantities, such as production and

dissipation rates in the flow. In their comparison with various numerical

methods, they found that a modified algebraic stress model predicts the flow

more accurately than does the k - e model or the unmodified algebraic model.
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The modified algebraic stress model was found to be more sensitive to

streamline curvature effectson the turbulence.

Seban[15] measuredvelocity and temperaturedistribution downstream of

a backward facing step using a constant heat flux surface. For a one-inch step

and a free-stream velocity of 15Oft/sec, he found that the mean reattachment

point was about six step heights downstream of the step. The typical law of

the wall was not found in either the separation or reattachment regions. Filetti

and Kays [16] measured the local heat transfer coefficient on a constagt-

temperature surface behind a symmetric sudden expansion. The expansion

ration of 2:1 was used, and the peak heat transfer rate occured at the reat-

tachment point, which was approximately four step heights downstream of the

step. Significant augmentation of heat transfer rate downstream of reattach-

ment, up to six times the fiat-plate value, was found. However the measure-

ments were taken from the step edge to 14 step heights downstream and the

Nusselt number profile did not approach the typical fiat-plate value. The peak

heat transfer rate based on Nusselt number was found to vary as Re °.6 over the

range 70,000 < Re < 205,000. Seki et al. [17], [lg] obtained temperature and

velocity measurements in the flow over the constant heat flux surface of a

double-sided, backward-facing step. The velocity and temperature measure-

ments were correlated to measure v'7", the turbulent transport of energy in the

direction normal to the wall. The v'T' profiles indicated that the turbulent

transport of heat in the direction normal to the surface increases as Re 2n and

is proportional to the heat flux rate from the wail. Vogel and Eaton [19] used

a single sided sudden expansion with a constant heat flux surface to make



combined heat transfer and fluid dynamic measurementsin a separatedand

reattaching boundary layer. Stanton number profiles were obtained for four

different Reynolds numbers ranging from 13,000to 42,000, and the bottom

wall of the development sectionwas porous to vary the boundary layer thick-

nessat the test section entrance from 0.3 to 6 cm. The upstream boundary

layer thickness had a significant effect of the heat transfer rate near reattach-

ment but very little effect either up- or downstream of reattachment. The

temperature profiles showed that the heat transfer resistance is dominated I_Y

the near-wall region.

Sindir [20] performed a numerical study of the effects of expansion ratio

on two-dimensional separating and reattaching flow in plane backward-facing

step with four models of turbulence. The k - _ model, modified k - e model,

algebraic stress model, and modified algebraic stress model were used, and the

modified versions employed a production term in the dissipation equation that

was made more sensitive to streamline curvature effects. The modified alge-

braic stress model produced the best predictions in the reverse flow region but

performed more poorly than others in the redevelopment region. Heat transfer

calculations were not performed. Gooray et al. [21] employed a two-pass

procedure: the first pass with an improved k - e model with the standard wall

function to find the reattachment point and the second pass with an improved

low-Reynolds number model applied to downstream of the reattachment.

Good prediction of the local Nusselt number was obtained downstream of the

step, but comparasion was made with limited data. Scherer and Wittig [22]

have used the k-e model with one-layer and two-layer wall function ap-



proach of Chieng and Launder [3]. The reattachment length was underpre-

dieted by 10 to 20% for the Reynolds number from 40,000 to 85,000. The

peak heat transfer was significantly underpredicted by the one-layer model,

and the two-layer model gavegood prediction of local Nusselt number down-

stream of the step. Ciofalo and Collins 1,23]have noted that the method of

Johnson and Launder [4] involves the near-wall profile of the turbulence

kinetic energy, and is sensitive to numerical errors. They have noted that

slopes of the nondimensionalvelocity profiles in the reverseflow region and

shortly downstream of reattachment point were not far from the equilibrium

value, while the intersectionwith the linear region was greatly reduced. They

modified the standard wall functions to relate the non-dimensional viscous

sublayer thickness to the near-wall turbulence intensity. Comparison of the

Nusselt number prediction with the experiment data on backward-facing step

showed significant improvement over the standard wall functions. However,

the prediction downstream of the reatttachment point converged to a value

about 12% lower than that of the experimental data.

1.3.3 Roughness functions for transverse ribs

The pioneering work on roughness functions was done by Nikuradse I- 24]

who performed extensive experimental measurements on circular pipes with

sand of a definite grain size glued on the inside surface. He showed that the

dimensionless velocity distribution is given by :

u + = 2.5 In (Y) + R (e +) (1)

9



where R (e +) is termed the roughness function.

A similar approach based on a modifi_cd Reynolds analogy was used by

Dipprey and Sabersky [25] to correlate their heat transfer data for flow inside

tubes with a sand grain indentation surface. The Stanton number was given

aS"

St = 2 (2)
I_

1 + ./c.f [H (e + ,Pr)- R (e+) -]
_l Z

where the heat transfer roughness function H (e + , Pr) was correlated as

0.22

H = 5.19 k+s Pr 0"44 (3)

Following Nikuradse, R (e +) was taken as 8.5 for fully rough flow.

Webb, Eckert, and Goldstein [26] used their experimental data to develop

the roughness functions R and H for flow in a tube of repeated transverse rib

L__<e < 0.04, 10 < 40, and e+ > 35,
roughness. For 0.01 < D e -

L 0.53
R = 0.95 (-.b--) (4)

0.28

H = 4.5 e + Pr 0"57 (5)

Han et al. [27] performed experiments to study additional effects of rib

shape and angle of attack of ribs to main flow in a channel with repeated

transverse rib roughness. A 45" flow attack angle was found to give higher

heat transfer for the same pressure drop, as compared to a 90" flow attack

angle. Their roughness functions for 90" flow attack angle are

10



, L ,0.53
R = 0.97 t--b--) for

L -0 13
= 4.45 (--e---) " for

L/e> 10, e+>_35

L/e< 10, e+<35

(6)

0.28

H =5.05e + Pr 0"57 for e +>35 (7)

Han et al. based the heat transfer coefficient on the total area of the heat

transfer surface including the rib area, for the ribs constituted an appreciable

fraction of the total area for a small value of L/e. When the heat transfer co-

efficient is based on the projected area, the heat transfer roughness functi9n

bccomcs

H = 4.04 e+°2Spr 0"57 for e + >_ 35 (8)

Dalle Donne and Meyer [28] performed experiments in an annulus with an

inner surface of transverse rectangular ribs and a smooth outer surface. For,

e+ > 30, the roughness functions were correlated as

R = R{co) + 0.4/n( e .)
0.01D [ 2

{9)

where

7 .] lOgl0 (b) (10)R(co) = 9.3(-_)-0"73 _ !-2 + (L-b)/e

L-b
for 1 < < 6.3

e

__ 7 ] lOgl0 (b) (11)R(co) = 1.04( )0.46 _ [2 + (L - b) [ e

L-b
for 6.3< _< 160

e

11



53 __ 0.5 e ]0.053 (12)
H = (4.16 e +0"282 + +--7-i7_")e prO'44( *b ) [- 0.01 (r 2- rl)

The first attempt to analytically determine the roughness functions for flow

over rectangular ribs was made by Lewis [-29]. The flow was approximated

by a series of attached and separated flow regions, and some empirical infor-

mation from experiments over cavities and steps was required. The k - e tur-

bulence model with the wall function boundary condition was used by Lee et

al. [ 30] to predict roughness functions in an annulus with ring type rectan-

gular roughness on the inner pipe. In a numerical study, fully developed flow

in a single module was solved using the periodicity conditions, as proposed by

Patankar et al. [31], in order to avoid the entrance region problem. A cor-

rection to the turbulent viscosity similar to that of Leschziner and Rodi [32]

was used to account for extra strain rates due to streamline curvature. How-

ever, as shown by Launder [10 ] the use of a wall function gives rather poor

prediction of Nusselt number for flow in an abrupt pipe expansion and flow

around a 180 ° square-sectioned bend.

1.3.4 Variable properties flow

There have been numerous experimental studies on heat transfer in turbu-

lent flow in smooth round tubes with large wall to bulk temperature ratio, and

many correlation methods have been proposed. A good review is given by

Petukhov [33]. For heat transfer, a recommended correlation is

I2



Nu b C Re 0"8" 0.4, Tw n
= rr b _ T-----_)

(13)

where C and n are constants far from the entrance. Petukhov observes that

different investigators obtained different values for n depending on the range

of Tw/T b. For variable property gases, he suggests

n = -(a log (--_-) + 0.36) (14)

a = 0 for cooling, and a = 0.3 for heating was recommended.

For the friction factor, the recommended correlation is

fb = ( )m (15)

where

m = - 0.6 + 5.6 Rew 0"38 (16)

Petukhov used the Reichardt eddy diffusivity profile to obtain analytical re-

sults.

Sleicher and Rouse [34] found a better fit to large amount of heating data

when n was modified to

n :- log (__)114 + 0.3, 1 < Tw[Tb<5, x[D>40 (17)

Many correlations are of similar form and three that are among the many

reviewed by Petukhov are summarized below. McEligot et al. [35] have per-

13



formed experimentswith air, nitrogen, and helium in a tube with entering Re

from 15,000to 233,000. The following forms were recommended

x -07
Nu b = 0.021 Re 0"8 Pr 0"4(-_-)-0"5[ I + (--_-) " -1

(18)fb
= (@b)-0.1r for 1 < TwIT b <

2.5

Lelchuk and Dyadyakin [36] recommend the same correlation for the heat

transfer without the entry length correction term, but for the friction factor the

exponent on the temperature ratio, m, was recommended as

T_, 2.4.
- 0.16 for 1.3 <--_/< Perkins and Worsoe-Schmidt [37] used precooled

nitrogen to obtain local values of TJTo from 1.24 to 7.54. Recommended

correlations were

ReO.8 . 0.4, Tw-0.7 (x____)-0.7 Tw 0.7Nu b = 0.024 v rr b t--_-b) [1 + v (_--£"b) ]

fw _ (Tw)-0"6 (19)

L

Perkins found that when the correlation of friction factor was tried on the bulk

Reynolds number, the exponent, n, had to increase from 0.1 to 0.3 over the

temperature ratio range of the experiment. The above correlation for friction

factor was based on the wall Reynolds number.

Experiments with repeated-rib roughness were performed by Vilemas and

Simonis [38]. Air was used in annuli with a rough inner wall for

5x10 a<Re<5xl0 s, 1 < TJT, n< 2.8, 0.0028 <e/d e< 0.021, and 8.3

< L/e< 13. For rectangular roughness dJd 2 was 0.42, and for rounded

trapezoidal roughness ddd 2 was 0.35. The outer wall was smooth, and only the

14



inner wall heated. It was found that, unlike smooth channels, the influence

of TJ Tb on the local heat transfer in rough annular channels depends heavily

on Re. The effect of TJTb decreased with increasing Re. The influence of

Re on the exponent, n, was greater for larger e/de • For example, for a channel

with e/d e = 0.021, n changed from about - 0.36 at Re = 2.8 x 104 to - 0.1 at

Re = 3.5 x l0 S. The exponent, n, was correlated within + 10 % by

n = - (0.29 + 0.03 e 5/eq_e) Re24e/de(1 - e -O16xld_) (20)

The friction factor for annular channels with rectangular roughness was cor-

related within +_ 4 % by

fb = (0.053 + 1.83---_-e )Reb 0"07 (21)
ae

In their experiment, an influence of variable properties on the friction was not

observed in smooth channels for TJTin up to 1.8. For the rough channel, the

effect of variable properties decreased with an increasing Re and became neg-

ligible at Re of about 5 x 105.

Wassel and Mills [-39] performed numerical calculations for variable prop-

erties turbulent flow with cooling for both smooth and rough walls. For flow

in rough pipes, the Nikuradse mixing length expression was used with a

roughness form drag coefficient and sub-layer Stanton number characterizing

transport to the wall. The variable properties in the roughness functions were

evaluated at the characteristic roughness height. Flow in a pipe with the

sandgrain roughness size equal to ks/R = 15 and 60, and rectangular rib

roughness with e]R = 0.02 and Lie = 10 were investigated. The results
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showedthat fa/fc depends on the roughness pattern and size, and a slight effect

of Reynolds number was observed. For the large sandgrain size, the Reynolds

number effect on St o/StC was large. The following correlations were recom-

mended for the ribs.

hw -0.2 St b hw -0.25

fb = (___b) , -(-_b ) (22)-_c S t c

1.3.5 Jet impingement cooling

There have been numerous experimental studies of both turbulent free jets

and turbulent impinging jets in literature: some of the work relevant to the

present study is described. Poreh, Tsuei, and Cermak 1-40] made measure-

ments of mean velocities, turbulence intensities, Reynolds stresses, and the wall

friction in a radial jet formed by an impinging circular jet on a smooth flat

plate. The ranges of parameters were H/d = 8 - 24, and Re = 64,000 -

288,000, where H is the distance from jet outlet to the impingement surface

and d is the jet outlet diameter. Beltaos and Rajaratnam [41] performed ex-

periments on plane turbulent impinging jets over the range, H[d = 14.04 - 67.5

and Re = 5,270 - 9,400. Mean velocities, static pressure, and shear stresses

over the impingement surface, and mean velocities and turbulent shear stresses

over the free jet region have been reported. Beltaos and Rajaratnam [42] also

made similar measurements for circular turbulent jet impingement over the

range of H/d = 21.2 - 65.7 and Re = 35,200 - 80,400. Giralt et al. [43] made

measurements for circular turbulent impinging jets over the range, Hid = 1.2
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- 25 and Re = 30,000 - 80,000. Velocity and length scales of the impingement

flow field were used to scale impinging jet centerline velocities and pressure

distributions. Wygnanski and Fiedler [44] made measurements of mean ve-

locities and turbulence quantities for an axisymmetric turbulent free jet. It was

concluded that the jet was truly self-preserving some 70 diameters downstream

of the nozzle. The Reynolds number was in the order of 100,000, and most

of the measurements were made for the distance of 40 to 100 diameters

downstream.

Gardon and Akfirat [45] were among the first workers to make thorough

heat transfer measurements for two-dimensional turbulent impinging jets.

Their results showed that stagnation heat transfer coefficients can be increased

by artificially increasing the initial turbulence of the jet, with the effect being

the largest for Hid < 8. A secondary peak in heat transfer coefficient for

Hid = 2 gradually disappeared with increasing induced turbulence. With

circular jets, they also observed the peak heat transfer coefficient at r = I]2 d

(rather than at the stagnation point) over a range of nozzle-to-plate spacings,

up to about H/d = 3. Goldstein and Behbahani [46 ] performed experiments

to study the effects of cross flow on a circular jet impinging on a fiat plate.

The maximum Nusselt number was found to decrease with increasing cross

flow for jet-to-plate spacing, Lldj , of 12, but for Lid i = 6, the maximum

Nusselt number increased with moderate cross flow when (pjuj)[(pocu_)> 9.

Hrycak [47] made stagnation point heat transfer measurements for round jets

impinging on a fiat plate, and found a Nusselt number dependence on the 1/2

power of the Reynolds number over the range, H[d= 1 - 20 and Re = 14,000
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- 67,000. More recently, Baughn and Shimizu [48] made a careful measure-

ment of heat transfer coefficients of a single air jet impinging on a fiat surface.

For Hid = 2, a second maximum heat transfer occurred at r/d of approxi-

mately 2. The local Nusselt number decreased to 70% of the Nusselt number

at the stagnation point at about r/d = 1.5, increased to 80% at about rid =

2, and then decreased to 20% at rid = 9. The experimental data for only one

Reynolds number equal to 23,750 was reported, and the stagnation Nusselt

number was 140 for Hid = 2. As with other investigators, the maximt,gn

stagnation point heat transfer occurred at a Hid of approximately 6. Unlike

Gardon and Akfirat's measurements, the peak heat transfer rate occurred at

the stagnation point, and not at r = 1/2 d for Hid = 2.

Wolfshtein [ 49] employed a one-equation turbulence model with wall

function boundary condition for a jet normal to a fiat plate. Only momentum

equations were solved in the numerical study. Amano and Brandt [50] per-

formed a numerical study of the flow characteristics of a turbulent jet with the

high Reynolds number form of k-e model. Upper plate surface pressure,

ground plane surface pressure, and velocity field for two-dimensional jet

impingement were computed by Chuang [51] using the high Reynolds number

k-e model. Similar computations were also performed by Hwang and Liu

[-52] with a fully developed jet velocity profiles along the inlet of computation

domain. Agarwal and Bower [53] used the Jones and Launder's low-

Reynolds number model to study the pressure distributions on the ground

plane in the presence of upper surface in normal impingement of the

compressible jet as in the case of VTOL aircraft. Good agreement was ob-
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tained. Malin [54] has used variations of the standard k-e model and

k - W model of Spalding [55] to compute free jets and wall jets with the for-

ward marching-integration procedure of PHOENICS. Inclusion of the

irrotational strain terms in the production term of the turbulent kinetic energy

generally gave improvements in the jet spreading rates. Predictions of the

turbulent shear stress and the turbulent kinetic energy improved close to the

center of the jet or the impingement wall, and somewhat deteriorated in the

outside regions.

A plane turbulent jet impinging obliquely at 70 ° on a fiat surface was solved

by Hwang and Tsou [56] using a two- equation turbulence model with wall

function boundary conditions. The distribution of the inlet profile was ob-

tained from the solution of plane turbulent jet, and the Nusselt number pred-

ictions compared well with experimental data, except at the stagnation point

where there seems to be about 32% overprediction. Rodi and Scheuerer [57]

used Lain and Bremhorst's [58-1 low-Reynolds number version of the k- e

model to predict the heat transfer coefficients around gas turbine blades. The

stagnation point was avoided by prescribing inlet profiles of dependent vari-

ables. Predictcd and measured heat transfer coefficients were in good agree-

ment except in the transition region due to its short length predicted by the

turbulence model. Computations of two-dimensional turbulent free jet and

turbulent impinging jet were made by Looney and Walsh [59]. Generally

good predictions of hydrodynamic and turbulence quantities were obtained

with the standard k - e model, but the results of the heat transfer cocfficients

on the impingement surface were generally poor. The algebraic stress model
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gave improvement in prediction of both mean and turbulence quantities for a

developing plane free jet. Amano and Sugiyama [60] employed Chieng and

Launder's wall functions to predict heat transfer coefficients for an

axisymmetric jet impinging on a fiat plate. A fairly good prediction for Hid

= 4 and Re = 20,000 was obtained , but there was a 35% overprediction at

the stagnation point, and about 27-33% underprediction over the range rid

= 3 - 15 occured when compared with data for H[d= 10. Polat et al. [61]

studied the effect of various wall functions on prediction of heat transfer for a

confined two- dimensional turbulent air jet impinging on a fiat surface. Chieng

and Launder's wall functions approach with the turbulent kinetic energy

evaluated at the first node instead of at the edge of the viscous sublayer in the

evaluation of wall shear stress gave the best prediction. Even though this

method correctly predicted the secondary peak in heat transfer coefficient for

HJd -_ 2.6, the prediction became poor downstream of the stagnation point,

with about 37% overprediction at y[d -- 16. For Hid > 6, the model contin-

ued to predict off-stagnation minima and maxima even though such features

are not present in experiment, thus the prediction became poor in the vicinity

of the stagnation point also. As with Amano and Sugiyama, the wall function

approach seems to perform poorly in the redeveloping region. Polar et al.

[623 made flow and heat transfer predictions for confined turbulent impinging

slot jets, with and without through-flow. Chieng and Launder's wall functions

and the modified shear stress expression to account for thi_ effect of mass

transfer at the impingement surface were used. Generally good predictions for

heat transfer coefficients within 10% were obtained for small through-flow,
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but substantial overprediction at the stagnation point and at higher through-

flow rates occured. Yap Ill] has made calculations for the impinging jet flow

experiment of Goldstein and Behbahani [46], with both the algebraic stress

model and the low Reynolds number k- a model. Comparisons of the two

methods were made for predictions of centerline velocity decay and mean ve-

locity and temperature profiles downstream of the stagnation point, and there

was little difference. Local heat transfer predictions by both models were al-

most the same, and both overpredicted the stagnation point heat transfer by

15 %. Predictions were not in good agreement within about a nozzle diameter

of the stagnation point, but improved further away. Only one value of the

parameter Hid (= 6) and one value of Reynolds number was investigated.

Hrycak [63] reports that there are a substantial number of investigations

of heat transfer from jets impinging on fiat plates but only relatively few ex-

perimental results concerning heat transfer from jets impinging on concave

surfaces. Some of the early experimental studies related to the concave inner

surface of gas turbine airfoils cooled by impinging air jets were done by

Metzger et al. {64 ], Chupp et al. [65], and Jusionis [66]. More relevant to

the present study is the experimental work by Livingood and Gauntner [67]

[68], [69 ]. Correlations of Nusselt number were presented in terms of the

dimensionless quantities involving nozzle diameter, nozzle-to-target separation

distance, target cylinder diameter, and nozzle center-to- center spacing for

number of air jets more than one. The nozzle-to- target separation distance

was found to have a greater effect on the normalized Nusselt number distrib-

ution than did the variation of Reynolds number. Hrycak [63] performed a
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similar experiment with a much more careful study of the hydrodynamics of

the impinging jet. His heat transfer correlation was based on Froessling's

hydrodynamics solution [70] and Colburn's analogy.
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Chapter 11

MATHEMATICAL MODEL

2.1 MEAN TRANSPORT EQUATIONS

The set of elliptic partial differential equations governing a single- phase,

compressible, variable property flow is as follows.

Continuity:

_p
-- + _ (PUi) = 0 (23)
Ot Ox i

Mornen turn:

O (pui)+ 0 Op Ozij
Ot -_xj (puiuj)=- Ox--_t+ Fi + axj (24)

Energy:

0

@t (ph)+ c'-_'j (pujh)
0 (F OT ) _3ui OP OP-- + + + (25)

where the stress tensor, Zsj, is given by

Ouj 2 OUk
(26)
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The instantaneouscomponentsin the aboveequationscan bedecomposedinto

sums of mean and fluctuating parts. For example, the streamwise velocity

component, u, can be written as,

u=U +u'

Ignoring fluctuations of physical properties except density, and time-averaging

the decomposed equations yields the following.

Continuity:

o-_ o
a--7-+-7--(-_6xi Ui+ p'u'i)= O (27)

Momentum:

0 --- 0 OP 0 , ,

-_t p Ui+ P'Ui')+ -:---(-fidxj UiUj)- Ox i _-xj.{p'ui' Uj + p uj Ui)

(28)

Energy

-_(ph+p'h')+ . Oxj[ OxjkCe)j

0 O-_xj 0 , ,- O---_j(-fiu/h')- p'uj'h')---_xj(p'h'_j+pu j h)

(or, o_'] o_,
+"k-a7 + Ox,) Oxj

(29)
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The equations (27),(28), and (29) cannot be solved in their exact form. Mod-

elling of certain terms in the equationssuch as u/u] are required to provide a

closed set of equations.

2.2 TURBULENCE MODELS

For steady flow and neglecting turbulent correlations involving density fluctu-

ations, the transport equations reduce to the following.

0
(p Ui) = 0 (30)

Ox i

o (ocSh __o[ o___(h)_o.jh,axj _ r _xj

(ou, ovj_ov,
(32)

where the overbar notation for mean values and the prime notation for the

fluctuating component of velocities has been dropped. The time mean of the

product of the fluctuating velocities are modelled using the modified

Boussinesq concept

-- uiuj= vt k oxj +'-_xi / ---3 -k 6ij (33)
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The turbulent heat fluxes are approximated using the eddy diffusivity concept

as

#t Oh (34)
- pujh' - pr t _xi

2.2.1 Tile high-Reynolds number k-c model

For the k - e model, the turbulent viscosity, #t, is modelled as

k 2
]/t = c_ p T (35)

where cu is a constant for high Reynolds number flow.

The transport equation for turbulent kinetic energy k can be obtained from

manipulation of the three normal stress equations [71 ].

0 (p, Oui
axj axj [ui + ok)] - o Oxj

0 (OUi Ouj_ OU i (OUi 019

#'-_xj Ui k Ox j 'f- --ff"_X#) -- I't'-_Xj k OXj q--ff"_Xi )

+

(36)

Following Jones and Launder [72], the diffusion term is modelled as

O [ui(P, + pk)] = 3 (ltt Ok)
OXj OXj ff k Oxj

(37)

Substitution of the above equation into Eq.(36) and rewriting the last two

terms on the RHS results in the following form valid for high Reynolds num-

ber flow,
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#xj (p = a k Oxj + P- p_
(38)

where e is the dissipation rate of turbulent kinetic energy defined as

Ou i Ou i
- v (39)

Oxj axj

and P denotes the generation rate of turbulence energy.

(40)

The transport equation for e is obtained by taking the derivative of the in-

stantaneous x i direction momentum equation with respect to xj, multiplying

by 2v Oui'/Ox j and then averaging.

O 0 [ (OUi'_ 2 OP' aUJ 08 [

OUk (Ou i _u i OUk OUj) OU i 02Ui2 _ _ Oxj OX k 4- OX i OX i -- 212 uk Oxj Oxj Ox k

,u (,2ui)2- 2kt Ox k Ox) Ox) 212 OxjOx k

(41)

Following Jones and Launder [72], the diffusion term is modelled as

0

axj

( Oui _ 2]
(42)

The last two terms on the RHS of Equation (41) are approximated as

27



OY kOuiOxjOUi_Ukcxj t OxjOxkO2Ui12 2

P
-- 2 2 = -- P ) (43)

Assuming the turbulent diffusion due to pressure fluctuations is small,

Hanjalic [73] has found the following form may provide the basis for satis-

factory predictions for high Reynolds number flows,

Oxj (pUje) = . - c_2 P m (44)ae Oxj +eel k k

The recommended empirical coefficients are

c_ = 0.09, eel = 1.44, c_2-- 1.92, a t = 1.3, a k = 1.0 (45)

This model is valid only in the turbulent flow regime where viscous effects

are negligible. The wall function approach, that uses a form of the law of the

wall to approximate the solution for the near wall region where viscous effects

are not negligible can be used with the above model. This will be discussed in

detail in section 2.2.3.

2.2.2 The low-Reynolds number k-r. model

Jones and Launder [-72] extended the two equation turbulence model to pre-

dict the flow in the viscous sublayer. The model includes the viscous diffusion

of k and e and the coefficients in Eqs. (38) and (44) are assumed to be de-

pendent on turbulent Reynolds number. The approximate transport equations

of Jones and Launder's low Reynolds number turbulence model(JL) [72] with

some constants modified by Launder and Sharma [74] are summarized below.
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g-xj(PUJk)=2g-  jL\- k + /a jj+P-p -2 Oxk
(46)

(47)

The turbulent viscosity,/_t, is given by

k 2
ut=c.fup-- (4g)

where the dissipation rate, _, is equal to _ + 2v (c?k_12/Oxk) 2 , and the function

fu is introduced to produce the effect of molecular viscosity on the shear stress.

The empirical coefficients adopted are

-3.4 ]y. exp

(1 + Re t 150) 2

f_ -----1.0 - 0.3 exp (- Re 2)

k 2
Re t = --_

V_

(49)

The above equations with the appropriate boundary conditions for h, and

u s = k = _ = 0 at the wall comprise a complete model.

Chieng and Launder [3] applied this low Reynolds number model to the

flow in a sudden pipe expansion, and the predicted heat transfer rates in the

vicinity of the reattachment point were too high by up to a factor of 5 as a

result of too large a length scale near the wall. Yap [11] added a source term

S_ to the right hand side of the transport equation for e

29



=083( 1tkl5)(k15c,y)2 (50)

where y is the distance from the wall, and c t= 2.5. Yap found that inclusion

of this source term gave Nusselt number predictions comparable with the ex-

periment and improved the Reynolds number dependence. This term was also

used in the present study.

2.2.3 Wall functions

For many turbulent wall boundary layers the inner portion of the flow has

the logarithmic law of the wall behavior. With the wall function approach, the

equations are solved on a relatively coarse grid, and the near wall region is re-

placed with formulas based on the logarithmic velocity and temperature pro-

file. The logarithmic velocity profile is given as

u + = 1 In (Ey) (51)
K

where K is the yon Karman's constant(=0.41), and E is equal to 9.0 for a

smooth wall.

The skin friction coefficient is defined as

cf _ _ 1 (52)

2 pu 2 =

Substitution of Eq.(51) into the Equation (52) with the definition of local

Reynolds number
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u y
Re - v (53)

yields a relation for momentum transfer to the wall.

2

K
(54)

The logarithmic temperature profile is given as

T + = Prt(u + + P) (55)

where P is an empirical function of the molecular Prandtl number. Substi-

tution of the above equation into the definition of Stanton number

qw 1
St = - (56)

pUCp (T w - T) u + T +

yields the relationship for the heat flux to the wall as

cfl2
st = (57)

For a smooth wall, Launder and Spalding [2"] proposed a simpler version of

Jayatilleke's correlation [75] of the P-function,

p= 9.0 (. P--f-r - l)(Prt'] 2
Pr t \ Pr ]

(58)

Convection and diffusion of turbulence energy are found to be nearly always

negligible in the vicinity of a wall [76]. The balance between the production
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and dissipation terms in the turbulence kinetic energy equation yields the

boundary valuesof k and a as

2"W

k = (59)
0.5

pc.

kl.5
e = (60)

Gy

where C d is a constant equal to 2.55.

The above wall functions have been tested for channel flow in the present

study and satisfactory results were obtained for both momentum and heat

transfer. Thcy were used for flow in a sudden pipe expansion to supply fully

developed conditions at the inlet.

Although the above wall functions correctly predict zero shear at reattach-

ment points, they also predict zero values of heat flux and turbulence kinetic

energy. However, experimental measurements show that these quantities have

maximum values at reattachment points. This deficiency can be removed by

choosing k_/2 as the velocity scale, which was first proposed by Launder and

Spalding [2]. This is discussed in the next section.

Wall functions have been derived above for smooth walls. For rough walls,

only the empirical functions need be replaced. For example, Han's [27]

roughness functions for transverse rectangular ribs reduce to

exp[0.39 (L [ e)0"53]
E = (61)

e +
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0.28 ( L ]0.53
P = 5.05 e + - 0.97--g- (62)

2.2.4 Improvements in wall functions

As pointed out earlier, the wall functions based on the velocity scale of

r

\/rw/p are not suitable for recirculating flows because of incorrect predictions

of heat transfer rates and turbulent kinetic energy at reattachment points. The

problem can be avoided by adopting the proposal of Launder and Spaldi?_g

[2] in which the flow in the near wall region is assumed to be in local equilib-

rium. The logarithmic velocity and temperature laws are used with the non-

dimensional parameters replaced with

T + =

1/4 k 1/2

y+ = "_ .-p Y
v

cpl[4. !/2
Kp u

H-t- _

Zw/P

1[4 t. 1/2
(T- Tw) pCp ,.. r_p

qw

(63)

In the turbulent kenitic energy equation, the dissipation term used is the aver-

age over the control volume near the wall.

In (Ey;)

_YP _3/4 k3/2edy = ,.g ..p K (64)

For the equation of dissipation rate e , the value is evaluated under local

equilibrium condition as
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k312
3/4 "-P (65)

The above wail treatment has been tested in the present study for a

backward-facing step problem, and the heat transfer rates in the neighborhood

of reattachment points were poorly underpredicted (as has been shown by

many investigators).

Ciofalo and Collins [23] extended the Johnson and Launder's proposal

[4] of varying viscous sublayer thickness with the level of turbulent kinetic

energy diffusing into the sublayer. Their approach is to relate the non-

dimensional viscous sublayer thickness to the near-wall turbulence intensity

rather than to the near-wall profile of the turbulent kinetic energy as in the

proposal of Johnson and Launder. This proposal is implemented as follows.

In the equilibrium boundary layer, the nondimensional turbulent kinetic en-

ergy, k + - k / u_ , can be expressed as

k+ c__1/2 ( y+ 2= --T)
Yvo

y+ <_yv+ (66)

k + = c_ 112 y+ >yv + (67)

where y+ is the nondimensional viscous sublayer thickness taken as 11.225.

Using the above profiles of k + and those of u + in the viscous sublayer and

in the fully turbulent region, the turbulence intensity in the equilibrium

boundary layer can be expressed as
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2

+ (68)k 1/2 1 Rey < Yvo_1 e -_
u 1/4 +

c. )%

2

= + (69)J/e K Rey > Yvo
cu /4 ln(E_b)

where Rey is the local Reynolds number, uy/v , and 4_ is the root of the

equation

_---ln(E0) = Rey (70)
K

The ratio of _'p/g'E is interpreted as an index of the distance from equilibrium

in the near-wall region, and comparison with experimental data suggests a

simple power law of the form

= c
+

YvO

(71)

where the exponent c is found to be a value between 1[3 and 2/3.

The thermal sublayer is approximated for 0.5 < Pr < 2 as

Y+( pr t )0.25v (72)

With the calculated sublayer thicknesses, y+ and y_, the constant E and the

P function in the logarithmic laws can be reevaluated.
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2.2.5 Wall fimction method for variable properties flow

Viegas and Rubesin [77] extended Chieng and Launder's wall function

approach [3] to include the effect of compressibility for flow over adiabatic

surface. Supersonic flow over a fiat plate and two cases of normal shock-wave

turbulent boundary layer interaction at transonic speed with and without sep-

aration were computed with k- _ model of Jones and Launder [72] and of

Chien [78], and k- 022 model of Wilcox and Rubesin [79 ]. Computations

were performed with both the wall function method and integration to t,he

surface with all three models, and comparison with experiments were generally

better with the wall function method, provided that the first two mesh points

lie between the buffer layer and the wake.

Viegas et al. [80] improved the wall function approach to nonabiabatic

conditions and relaxed the criteria for the placement of the near-wall mesh

points so that they can lie in the viscous sublayer. Computations for attached

and separated flows over both adiabatic and nonadiabatic surfaces with Mach

numbers, 0.875 < Ma < 2.85, gave good agreement with the experimental data.

However, they point out that the nonadiabatic contribution to the wall func-

tion had a small effect on the local temperature due to small surface heat fluxes

and that the wall function can be in considerable error. They comment that

improvements in shear and eddy viscosity modeling within the first mesh vol-

ume will be required for consideration of very cold wall cases.

Following Chieng and Launder's approach, Viegas et al. assumes that the

turbulence Reynolds number, Re v = y_]c_12Jv, a universal constant equal to 20

which would require a cubic equation for kv. This assumption has led to poor
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prediction of heat transfer rates(20-30% lower than the experimental data) in

abrupt pipe expansionflows [4]. In this study, the approach of Ciofalo and

Collins [-23] is used to calculate the viscous sublayer thickness, and the as-

sumption of Re v = 20 is abandoned. However, the calculation of P function

from the thermal sublayer thickness is not used, and the surface heat flux is

calculated from a reduced energy equation as will be shown later. The effects

of compressibility was added following the approach of Viegas and Rubesin.

The conventional law of the wall is extended to compressible flow with :,he

use of the van Driest transformation, and the effective u + is

'_ p 1/2(-hT) d.+
u = (73)

U T

and the effective kinetic energy of turbulence is shown to have the density

scaling as [79]

pk

kef f = _ (74)

The nondimensional y coordinate is chosen as

+ y u,
y -- (75)

_w

and the friction velocity is defined as

(76)

With the above relations, the mean velocity profile is given by
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P,; } Jo\-e£/d_\
zwlPw

Pw'
1

= --.1- In E*
K VW

112

(77)

where E* and K* are 5.0 and 0.23 respectively. With the approximation of

constant pressure between the wall and the first node point, the effective ve-

locity can be evaluated as

\-fiTl du = +
(TITw) I12 (TITw) I12

(78)

In order to evaluate the integral, the following analysis is employed. Neglect-

ing the convection of heat near the surface, the temperature distribution in the

viscous sublayer is obtained as

T = Tw Pr + (79)- -_pqw( )1"

where

(80)

and a mean value of z was employed as

2 (81)
(+)l-- rv + Zw

In the fully turbulent region, neglecting the molecular diffusion of heat leads

to the following temperature distribution.
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qw [ 1 l]T = r w - -_p Prt(T)t(u-Uv) + Pr(--_)lu v (82)

where

(83)

and a mean value of z is taken as

71 + 7v (84)
( )t = 271 Zv

Substitution of Eq. (79) and Eq. (82) into Eq. (78) produces the following re-

lationship for the effective velocity.

\-_w ) du = ! 1-
Prqw(--i-)l

+ Pr ,I, -_w - -_w
tqd, T)t

(85)

The velocity at the viscous sublayer is obtained from the momentum equation

at the near-wall mesh as

2

Prqw 1 2 7w 1 dp(T)lU v = --fi-_wyv + _(_) (86)
Uv 2cpT w

If the near-wall grid point lies within the viscous sublayer, the wall shear stress

is calculated using Eq. (79) and the assumption, pip., =T]T w.
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[ 21Prqw 1 2 1 YP dp #w (87)
t w = Up 2cpT w (-T)lUp #w 2 ('-_-x) Yp

Given Tw, the wall heat flux can be obtained from Eq. (82), and iteration is

required among u_, T_, %,, and qw.

Next, the mean generation and dissipation rates of k are derived as pro-

posed by Chieng and Launder [3]. A simple expression for the mean dissi-

pation rate g is obtained by neglecting the variation of k across the near-v;all

grid, but Chieng and Launder found that the prediction of local heat transfer

rates were bctter with the variation of k taken into account. The turbulent

shear stress is assumed zero in the viscous sublayer and undergoes an abrupt

increase at the edge of the sublayer, varying linearly over the remainder of the

near-wall grid. The mean generation of kinetic energy becomes

P = 7- _w+(_l-_w)-£F +--_-x/

where the subscript 1 denotes the north edge of the near- wall grid. Using the

mean velocity distribution of Eq. (77) the integration leads to

P =
"rw Pw-112 ( In Yl

pw ,(ppkp/Pw)_/2(--_() _w

l Yv Zl -- Zw
OF t_(l - ++ _ k-;]-) 2

+(tl _,rw)(l_ Yv)']
Yl /

(89)
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For the evaluation of the meandissipation, a linear variation of k is assumed

between the edge of viscous sublayer and the second grid next to the wall, and

a parabolic variation of k is assumed within the viscous sublayer as follows.

y 2

k = k v (-_-v) , Y -< Yv (90)

k l - kv kp - k N

k - yl_yvy+(kp- yp_yNyp)= by+a , Y>Yv (91)

The dissipation rate of k is not zero in the viscous sublayer unlike the gent:r-

ation. Use of the parablic profile of Eq. (90) gives

2V w k v
e - (92)

Yv

where v in the sublayer is assumed to be a constant and equal to its wall value.

In the fully turbulent region, e is evaluated as

k312
- (93)

clY

where c I = K/cy 4 = 2.55

The mean dissipation rate of turbulent kinetic energy in the near-wall grid

is evaluated as

go= Yl k PP Jo dy + _ dy
(94)

Upon evaluating the integrals, the following expression is obtained.

2VwPwkv 1 { 2__k3/2 k3/2)+ 2a(k_/2 k_![2)+)_) (95)-- --If- -- --

-gP YlYvPl c-_'l\ 3 1
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where

[ (k_12 - al/2)/(k_12 + all2) 1,_ = a 3[2 In (kl[2- al/2)/(klv/2 + all2 ) , a > 0

a<0

(96)

Dissipation at the near-wall node is approximated under local- equilibrium

condition as

kp3/2

gp -- clY p
(97)

2.2.6 Algebraic stress model

The algebraic form of Reynolds stress equation can be obtained by neg-

lecting gradients of _ [k, which is true when uiui/k is constant, and approxi-

mately true when uiuj[k varies slowly across the flow field. The resultant

equation proposed by Rodi [81] assumes that the convective and diffusive

transport of u_ui are analogous to those of turbulent kinetic energy as follows.

_ u& Ok
Uk Oxk k U_ Oxk

UiUj

Dij = --£-- D(k)

(98)

where D 0. is the diffusive transport tensor and D(k) is the diffusion of k. The

transport equation for k and e are modelled following Daly and Harlow [82],

as follows:
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) cqUi
c?k _ _ v O____k __ k _ k _ uiuj

uj OA) Oxj Ok) + ckuiuJ _ Oxi Oxj
(99)

(lOO)

Combining the equations (98) and (99) with the Reynolds stress equation, the

algebraic equation for u;uj is obtained as

uiuj.(P- e) = Pij- 23--"6ije + c_ijk
(lOz)

where P is the production of k, and 4_0is called the pressure-strain tensor. The

generation tensor of u_ui is given by

Pij = -uiuk Ox k ujuk gxk
(1o2)

The pressure strain term is modelled into two component, _btj,_which involves

only turbulence quantities, and 05ej2 which involves products of turbulence

quantities and mean rates of strain. The component 4ij,_ has been refered to

as the "return-to-isotropy" term, and is modelled by Rotta [83] as

_/j,l ----- --el T Tc_/j k (103)

The mean strain part of the pressure strain term, _b_j,2has been modelled by

Launder et al. [84-1 as

= _ _ 2 p)ckO,2 c2 ( Pij -_- 6 ij (104)
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where c_ and c2 are 1.8 and 0.6 respectively. Shir [85] proposed that the term

qS_,_ be modified to account for the near-wall effects by adding to it the fol-

lowing correction:

_-- 3 3 l
0 ' = _k--"(UkUmnk n m 6 0- -- UkU i n k --ij, l el' _- nj --_UkUjnkni)f(_iri ) (105)

where ni is the unit vector normal to the wall, r, is the distance from the wall,

and l is the length scale, k3/2/c_e. The f function acts as to diminish the influ-

ence of the near-wall correction as the distance r increases. Shifts idea xwas

extended by Gibson and Launder [86] to model a near-wall correction for the

term {bij,2.

dp ' 3 3 qSjk,2nkni)f( n_) (106)ij,2 = c2' ( q_km,2 nk nm 6 ij - "_ dPik,2 nk nj -- -_

The final algebraic equation for the Reynolds stresses is

(1 -- c2) k
2 @k+UiUJ = T P+(c 1 - 1)8

-
Pij Taij P + (1_c2)

(107)

A proposal was made by Launder [87] to produce better prediction of turbu-

lent shear stress in a free jet. His proposed equation is

(1 - c2)
uiu ) = 2-_-6ij.k +3 (2- 1)(l+e) + (e-fl) A + c 1

[(Pq---2 60"P)+3 (1_1 ({/)/j,l+/j,2)]c2) ' 4} '

k

g

(108)

where
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2 = Pie and A = D(k)/e (109)

and fl are empirical constants with values of 0.3 and -0.8 respectively.

2.2.7 Closure

The wall function approaches were tested in the present study for abrupt

pipe expansion flow and flow downstream of a backward-facing step, and

proved to be inadequate(especially when the step height is too small to locate

sufficient number of grid points). The low-Reynolds number model with

modification by Yap has received most attention in the present study.

It has been known that the Boussinesq-viscosity hypothesis cannot simulate

the level of anisotropy of normal stresses resulting from curvature in flow. A

related example is the turbulence-driven secondary motions causing bulging

of the velocity contours towards the corners in straight, non-circular ducts and

open channel. The motions has been known to have a pronounced effect on

the shear stress and heat transfer in the corner region and cannot be predicted

by an isotropic eddy-viscosity model. Numerical studies are currently under

progress with the algebraic stress model.
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Chapter III

NUMERICAL SOLUTION

3.1 PHOENICS

The present study uses PHOENICS(Parabolic Hyperbolic Or Elliptic Nu-

merical Integration Code Series) developed by CHAM Ltd. It is a general

purpose computer program for the analysis of fluid-flow, heat transfer,

chemical-reaction and related phenomena. PHOENICS can solve single-phase

or two-phase parabolic and elliptic problems in cartesian, cylindrical polar,

and curvilinear body-fitted coordinate systems. Dependent variables in the

governing equations are allowed to vary in one, two or three dimensions and

in time.

PHOENICS consists of two main computer codes and an auxiliary code.

The main codes are a pre-processor called SATELLITE and a processor called

EARTH. SATELLITE is an interpreter that converts instructions provided

by the user into a data file for EARTH. EARTH is the main flow-simulating

software that executes the corresponding computations. Various data-setting

can be made by the user in GROUND which is a subroutine of EARTH. The

auxiliary code is called PHOTON. It is a graphics program that presents the

computed grid and flow pattern on the screen.
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3.2 SOLUTION ALGORITHM

3.2.I Grid configuration

In PHOENICS, staggered grids are used. Pressure and other scalar de-

pendent variables including the turbulence kinetic energy and dissipation rate

are stored at the cell nodes whereas velocities are located at the cell faces. For

U velocities, the control volumes are displaced in the positive x direction by

one half cell so that, for Up, the west boundary of the cell passes through the

node point P, and the east boundary passes through the node point E. Grid

node locations and the staggered grids for velocities are shown in Figures 3.1

and 3.2. The V velocity control volume is similarly displaced by one half cell

in the y direction.

The grid nodes are placed in the ccnter of the control volume, rather than

the control volume faces being placed half way between grid points. This grid

arrangement is convenient with the solution domain containing porosities,

since the control volume faces can be located along the boundaries of the

blockage, whereas the latter grid arrangement would require setting up the grid

nodes first and cell boundaries to coinside with the boundaries of blockage.

The governing equations are integrated over individual control volume or

grid cell to arrive at the discretised equations.
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3.2.2 Discretisation of the governing equations

PHOENICS provides solutions to the discretized versions of sets of differ-

ential equations having the general form [88-1 :

Ot tPi_i)+ 7 .(rip i Vq_ i- ril"cbiV_i)= riS i
(110)

where,

t stands for time

r i stands for volume fraction of phase i

pi stands for density of phase i

q_ stands for any conserved property of phase i, such as enthalpy,

velocity, mass fraction of a chemical species, etc.

stands for velocity vector

1-'¢i stands for the exchange coefficient of q5 in phase i

S_ stands for the source rate of q_i

Integration of Equation (110) for a single phase over the whole volume of the

domain of surface area A, followed by application of the divergence theorem

yields:

_A _ (p-Vqb-FcbVqS)ndA = _ScpdV (lll)

Rewriting the convective and diffusive fluxes normal to the surface area at

e, w,n,s (east, west, north, and south of the control volume faces), the

equation in two-dimensions becomes:
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with

J e = (P U)e (4 6Yns) c_e - r4,,e ('J (SYns) -_x [e

04)
Jw = (P U)w (4 g)Ym) c_w - r4),w (4 @ns) _ Iw

(113)a4

and 6yns and 6x,_ indicate the distance between cell volume walls, n and s, and

the distance between cell volume walls, e and w respectively, as shown in Fig-

ure 3.1. j = 0 and l corresponds to cartesian and cylindrical coordinates re-

spectively. For the convective and diffusive flux at the west face, Je , the

transport properties at e can be evaluated either by arithmetic averages of

those on either side of the cell faces, or by harmonic mean averaging. In the

present study, arithmetic averages have been used to approximate the trans-

port properties.

The value of _b is assumed to vary linearly between grid nodes in the ap-

proximation of Oc_]ax [e, and the use of central difference scheme results in:

(4e-

<?x [e =" 6xEp

In the evaluation of _be in the convective flux term in Je, there are many alter-

natives. In the upwind scheme, a stepwise variation of q5 is used, and the flux

(114)-
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of variable q5 across the cast cell face is taken as the product of the mass flux

and the value of q5 at the upwind node. Thus the flux is:

PpUebYnsC_P for U e>O
(1,5)

PEUebYnsOE for U e<O

In the hybrid scheme that was developed by Spalding [89] , the value of _e is

cvaluatcd by the central difference scheme when the cell Peclet number, Pc, is

less than 2 as follows.

eke + 4E (Pu)e  Xee
q_e = 2 [ [ < 2 (116)

' F_, e

de Vahl Davis and Mallinson [90] have shown that the false diffusion coeffi-

cient, arising from the use of upwind differencing scheme when flow cuts

across grid lines at an angle, is given approximately by

pUAxAysin 20

Ff = 4(AY sin30 + &xcos30) (117)

where 0 is the angle made by the velocity vector with the x direction. The false

diffusion is the largest where the velocity vector is at an angle of 45 ° with the

grid lines.

A better approximation of the exact solution using a quadratic interpolation

equations called QUICK was proposed by Leonard [91]. For a uniform grid

spacing, the resulting formula is

dpe= qhP+dPE--l(_pw--dpp+(pE ) for Ue>O
2 8

d?e = dpp + (PE 1 (dpp - dpE + dPEE) for U e > 0
2 8

(118)
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where the secondterm is like a correction to a linear interpolation proportional

to the upstream-weightedcurvature. EE is the east neighbor grid point of the

grid E. PHOENICS only has the hybrid scheme and the upwind scheme as

options, and the present results were obtained with the hybrid scheme. The

algebraic stress model with the QUICK scheme is currently under investi-

gation.

Substitution of the approximations for the profile of _b at the cell face into

the Equation (112) yields the set of equation of the following form.

apq_p= Eaiq_i+ ffsodv (119)

where i = E, IV, S, N for the hybrid differencing scheme. For scalar variables,

the formula for the coefficients become

Fe @ns
a E = max (0,

OxpE

Fw aYns
a w = max (0,

CSX wp

Vn 3Xew
a x = max (0,

@Pf

Vs _Xew
a S = max (0,

@SP

¢Z[PeUe@ns[ ) + max(O,- PeUe@ns)

IpwUw I ) +

I I ) +

max (0, PwUw 6Yns )

(120)

max (0, - PnVn 6x_,)

o_lPsVsbXewl ) + max (O, PsVsbXew )

For c_ = 0, diffusive effects contribute irrespective of the value of cell Peclet

number, and the upwind difference scheme is obtained. The hybrid difference

scheme corresponds to _ = 0.5. In the variable properties flow, the cell-face

densities are evaluated using the upwing convention. Thus
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Pe = PP for U e > 0

Pe = PE for U e < 0
(121)

The expression used for the coefficient a E of U - velocity equation is

a E = max(0, d E-c_lmE[) + max(0,-m E) (122)

where

Pe 6Yns ( Ue + UeE)

mE = 2

I_E ¢SYns

d E - 6Xee E

(1 3)

eE is the east cell face of the grid point E, and other coefficients have the

similar form.

In the present study, the sets of linear equations are solved by the

TDMA(tridiagonal matrix algorithm) which is described in section 3.5.

3.2.3 Source term linearization and boundatT condition

The source term needs to be a linear function of _ in order to have the

whole discretised equation in the linear form. The nodal value of source terms

are supposed to prevail over the whole of the cell volume, and the source term

over a control volume can be written as

ScbdV = S c + Ccbdp (124)
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The proper linearization is to have the coefficient C 4, be less than or equal to

zero in order to assure that the coefficient a e remain positive to avoid diver-

gence of solution iterations. For the momentum equations, the pressure gra-

dient is added to the source term, and all the boundary conditions also enter

the discretised equations by way of the source terms.

The boundary condition on the wall for the momentum equations enters the

source term as the product of wall shear stress and the surface area of a wall

bounded cell face. For the laminar flow problem or a low-Reynolds number

turbulence models, the wall shear stress is simply the product of the near wall

velocity gradient and the fluid viscosity. In the case of wall functions ap-

proach, the wall shear stress can be evaluated from the law of the wall as in

section 2.2.3.

The constant wall temperature boundary condition enters the source term

similarly as the product of temperature gradient and the fluid thermal

conductivity near the wall. For the constant wall heat flux boundary condi-

tion, the coefficient C, is set to a small number, 10-1°, to prescribe a fixed-flux

source term.

In PHOENICS, the source term is always expressed as a linear function of

the dependent variable 4 as [92]

$4_ = C_ (V4_ - 4)ft (125)

where C_ is a link coefficient which relates the source term to the difference

between in-cell value of 4 and the boundary value, and V_ is the boundary

value for variable 4. ft represents some geometric factor such as area of the
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computation cell. This equation is appropriate for a boundary acrosswhich

there is no massflow, and sourceor sink terms only arisedue to diffusion.

For an inflow boundary, the mass source is expressed as a linear function

of pressure:

= G(G- p)f, (126)

The source of any other dependent variable _b is

s¢ = ,n v¢ + c¢ (v¢ - ¢)f, (l'.V)

where the first term represents the amount of ¢ convected into the computa-

tion domain, and the second term represents the source of _b due to diffusion.

C4, --- 0 is appropriate if diffusion effects are negligible. In order to prescribe

a flux boundary condition with Eq. (125) C¢ is set to a small number, 10 -l° ,

and V¢ is multiplied by 10+1° .

3.2.4 Solution of hydrodynamic equations

There exists various methods of treating the pressure-velocity coupling be-

tween the mass and' momentum conservation equations. PHOENICS uses a

variant of the SIMPLE algorithm [93] called SIMPLEST. The major differ-

ence between the SIMPLEST and SIMPLE algorithm is that in the former the

coefficients for the momentum equations contain only diffusion contributions,

and the convection terms are added to the linerized source terms. This implies

that, in the absence of diffusion, the momentum equations are solved by a

Jacobi point-by-point procedure instead of the line-by-line procedure [94].
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The essential idea is to use the continuity equation to derive an equation for

pressure correction to be added to the current iteration value of pressure which

will tend toward the correct pressure and also satisfy continuity equation. This

is summarized below.

The discretized momentum equation with the staggered grid for the velocity

components can be written as

aeUe=Z ai ui + b + (pp--PE) Ae (128)

An incorrect pressure field in the momentum equation yields a velocity field

that will not satisfy the continuity equation. In order to correct the guessed

pressure, the following steps of the SIMPLE algorithm are used, as proposed

by Patankar and Spalding [93].

The correct pressure and velocity are assumed to be in the form:

* p,p= p +

* UpU=U +

* VpV=V +

(129)

where the starred variables are imperfect values and the primed variables are

correction terms. Subtracting the discretized momentum equation based on

incorrect pressure and velocity fields from Eq. (128) results in •

, ,L ,
aeUe = /'_ aiui + (PP'--PE)Ae (13o)

The first term on the right hand side of Eq. (130) is neglected since the con-

verged solution given by this algorithm does not contain any error resulting

from its omission. The resulting velocity correction formula is
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Ae s

Ue' = a---7-(pp' -- pE )
(131)

Equation (131) can also be written as

ae r

Ue = Ue + "-_-e (PP'- PE) (132)

Equation (132) can be used to correct velocity from the pressure corrections.

Substitution of Eq. (132) and the corresponding equation for the velocity

component, vn, into the discretized continuity equation of the following form.

[(PU)e-(PU)w]CSy- [(PV)n-(PV)s]6X = 0 (133)

yields the pressure correction equation.

appp' = E aipi' + b' (134)

where

b' = [(p.*)w - (p"*)_]ay+ [(pv'), - (pv*).] ax (135)

b' is a mass imbalance in the control volume due to the fact that the current

velocities do not satisfy continuity.

The overall solution procedure consists of the following steps.

1. Guess the pressure field.

2. Solve the momentum equations to obtain the velocity field based on the

guessed pressure field.

3. Solve the pressure correction equation.
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4. Solvefor the new velocity field usingthe velocity correction formula.

5. Solve the discretized equation for other variables ( temperature and

turbulence quantities ).

6. With the new pressurefield, return to step 2 and repeat the procedure

until a convergedsolution is obtained.

3.2.5 Tridiagonal matrix algorithm

The tridiagonal matrix algorithm can be used to solve any set of equations

when the matrix of the coefficients of the equations consists of nonzero coeffi-

cients aligned along three diagonals of the matrix. The discretised equation

(119) can be rearranged in the following form.

aj+j : b;4;__+ cj+j+l+ dj (136)

where the subscript j refers to the grid node P and varies along a chosen line.

The recurrence relations are

CJ

Oj

9

aj- bjCj_,
_+ bjDj_l (137)

a;- b;c;_,

and the second stage consists of a back-substitution by

q_j = Cjdpj+l + Dj (138)

For the first equation
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c 1 dl

C1- -_l ' D1 = "_1 (139)

and

ON : DN (140)

A sweep along the line of nodes in the transverse direction is performed, and

the calculation is performed on the next parallel line of nodes with updated

values of qS. Upon completion of sweeps in the transverse direction, a sire!far

procedure may be performed in the sweep direction.

3.3 COMPUTATIONAL ASPECTS

3.3.1 Con vergence criterion

The criterion of convengence of the numerical solution is based on the ab-

solute normalized residuals of the equations that was summed for all cells in

the computation domain. The mass residual, or the imbalance of the conti-

nuity equation, is defined as

b' I
RES = (141)

thin

where b' is defined in the Equation (135). The residuals associated with other

dependent variables are defined as
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E 2 ai_Pi+ S- apC_p]
RES = (142)

Min, c_

where, for the momentum equauons, Min., is the total inflow of momentum

and for the equations of the turbulence kinetic energy and dissipation rate, it

is the product of total volumetric inflow and the inlet value of k and _ respec-

tively. The solutions are regarded as converged when these normalized resi-

duals become less than 10.3 for the continuity equation and 10 .2 for other

variables.

In the case of the turbulent flow in a channel with ribs, a typical output had

the normalized absolute residuals of 7e- 5, 7e- 2 , 1.5e- 3, 1.67, 1.67,

4.4e-3 , for continuity, V momentum, U momentum, k, _, and energy

equation respectively, after 1500 sweeps.,

In addition to the whole-field residuals, the average friction factor and the

average heat transfer coefficient were monitored at every 50 sweeps for the

problem of flow in channel with ribs. The relative errors of the average friction

factor and the average heat transfer coefficient defined below was less than 1%

for all cases studied.

_n _ _n+ 1
rel. error = (143)

In the case of flow in an abrupt pipe expansion, flow over a backward-

facing step, and the impingement cooling, the local heat transfer coefficients

were also monitored at every 100 sweeps. When the solutions were well con-

verged, the computed local heat transfer coefficients were almost invariant.
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For example, the change in the stagnation heat transfer coefficient for the

impingement cooling problem was less than 1% over 1000sweepsonce the

heat transfer coefficient profile was converged.

For the flow in a tube with transverse rectangular ribs, an increasein the

number of grids in the axial direction of 30% changedf and St by about 4%

and 3% respectively, and improved agreement with experiment. For the most

of the computation domain, at least 3 grid nodes were placed within the

viscous sublayer, and the grid was stretched in x or y direction by a factor of

1.1-1.5 carefully over various parts of solution domain. The effect of further

grid refinement near the wall was negligible for the prediction of flow field.

For the computations with wall function methods, most of the near-wall grids

were placed in the fully turbulent region, y+ > 30, and extensive grid refine-

ment tests were not performed.

3.3.2 Under-relaxation

The present computation involves equations that are nonlinear and strongly

coupled, and under-relaxation is required to achieve the overall convergence

to a solution. In the present calculations under-relaxation was applied in the

following manner involving the false time step 6tf.

ap+ eke = aieki+ S +-_'fekp (144)

where ek}', is the previous sweep value of ek at point P. If a{c is small the terms

containing it will be large and tend to dominate the equation, implying
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4p = 4_Ix (145)

Thus, the smaller the value of 6t/the less q5 can change from sweep to sweep.

An alternative form of under-relaxation called linear under- relaxation was

used for pressure as

X

P = P +_(p_pX) (146)

The turbulent viscosity was also under-relaxed in the similar manner.

× ×

_t = _t + _(_t-,ut) (147)

3.3.3 Computational time

For the flow in the abrupt pipe expansion of diD = 0.8 and Re = 20,130,

a grid of 71x37 for the low- Reynolds number turbulence model required about

620 seconds on the IBM ES/9000 model 900 in order to achieve the conver-

gence criteria. The RES of the turbulence kinetic energy and the dissipation

rate were not lowered below 0.5, but the local Nusselt number prediction was

almost invariant, and the iteration was terminated at 1500 sweeps. A grid of

59x21 for the wall function methods and the same problem required less than

half the time required for the low-Reynolds number model to achieve approx-

imately the same convergence criteria.

In the case of channel with ribs, the average friction factor and the average

Stanton number were monitored, and a typical run with a grid of 96x66 re-
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quired about 1300seconds. About the sameamount of computing time was

required for the jet impingement cooling problemwith a grid of 58x74.

3.4 COMMENTS ON PHOENICS CODES

PHOENICS hasmany capabilities for simulation of various fluid-flow, heat

transfer, and related phenomena. For example,curvilinear body-fitted coor-

dinates option can be usedto generategrids for complexgeometry. However,

the code is weak in turbulence modelling; the standard k - e model is the most

advanced one provided. For the low Reynolds number k - e model, the addi-

tional terms in the transport equations of k and e have to be coded as a source

term. The two-dimensional algebraic stress model formulation requires as

many as ten extra source terms to be coded in each of the momentum

equations. Due to inaccessibility of the source code and its large size, modifi-

cation can become very difficult. The advantage of PHOENICS over other

specific codes may be its capability to solve diverse problems, but due to its

large applications the code is difficult to debug. In addition, the upwind

scheme and hybrid scheme are the only differencing schemes available in the

current version of PHOENICS(I.4). Thus, the code may also suffer from lack

of solution accuracy due to numerical diffusion in many problems.
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3.5 BOUNDARY CONDITIONS

3.5.1 Flow in a sudden pipe expansion

Inlet conditions were fully developed profiles for k, e, and the axial velocity,

U, obtained from the straight pipe flow solutions of the standard k - _ model

with wall function boundary conditions of Eqs. (54), (57), (59), and (60). The

inlet condition for enthalpy was a uniform profile. The outlet was located

about 200h( = 60D) downstream from the step so that its influence on the main

flow would be negligibly small.

outlet •

p=0

symmetry •

wall •

The boundary conditions imposed were

UX
- O forc_ = u,v,k,_andT

o¢
_r

- Ofor_p = u,v,k,_andT

u,v,k,_=O

constant wall heat flux

The wall boundary conditions were an adiabatic wall on the entry pipe

( - 0.5D < x < 0) and on the side wall of the step, and constant wall heat flux

on the expansion tube as in Baughn's [9] experimental setup.
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3.5.2 Flow over a backward-facing step

The same boundary conditions for the flow in a sudden pipe expansion ap-

ply to this problem with cylindrical coordinates replaced by cartisian coordi-

nates. The inlet profiles for k, e, and the axial velocity U were obtained from

the two-dimension channel flow solutions of the standard k-e model with

wall function boundary conditions.

3.5.3 Flow in channel with rectangular ribs

The fully developed condition of Ou/Ox = 0 and v = 0 cannot be applied to this

problem since u varies continuously with x and v is not zero. But, the flow

field will repeat itself in a succession of cross sections that are separated by the

pitch length, L, as shown in Figure 3.3, sufficiently far downstream. One

possible approach is to use periodicity boundary conditions as proposed by

Patankar et al. [31]. Their approach is summarized below.

The velocity components are assumed to behave periodically as

ui(x,y ) = ui(x + L,y) = ui(x + 2L,y) = ..... (148)

The periodicity condition for pressure is

p(x,y) - p(x + L,y) = p(x + L,y) - p(x + 2L, y) = ..... (149)

and the pressure is assumed to be composed of

p(x,y) = - [3 x + P(x,y) (15o)

where/_ is defined as
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p(x,y)-p(x + L,y) (151)
fl= L

The fix term is related to the global mass flow, and P(x,y) is related to the

detailed local motion, and is assumed to be periodic as

P(x,y) = P(x+L,y) = P(x+2L, y) =. .... (152)

The fully developed temperature profile condition of OT/Ox = 0 for con-

stant wall heat flux boundary condition cannot be applied to the present

problem for two reasons. The first is the non-uniform heat transfer surface

area which precludes uniform heat addition to the fluid, and the second is the

nonzero axial conduction term, OZT[Ox 2. The temperature field is assumed to

be composed of a component due to the heat flux plus a periodic component.

A

T(x,y) = yx + T(x,y) (153)

where y is defined as

r(x + L, y) - 71x,y) Q
= (154)

L mcpC

A

and T is periodic as

A A A

T(x, y) = T(x + L, y) = T(x + 2L, y) =. .... (155)

Substitution of the Eq. (150) and Eq. (153) into the momentum and energy

equation yields a fl term on the right hand side of the x-momentum equation

and a - u7 term on the right hand side of the energy equation respectively.
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The pressuregradient/_ generatesa corresponding massflow, and its first

value is assignedas

2
r Pub (156)P = J-f-g

where fis obtained from the flow in a pipe with repeated- rib roughness [26].

The value of fl can be iterated upon until the solution converges, as proposed

by Lee [30].

1))
where the subscript o

overrelaxation factor.

(157)

refers to the value of the previous iteration, and _ is an

Patankar et al. have used this approach for the laminar flow problem, but

with at least two more equations(turbulent kinetic energy and dissipation rate)

in the present problem, further complication of the convergence problem was

avoided, and a simpler approach to the periodic boundary condition was used.

A fixed number of inner iterations were performed for given inlet conditions,

and the calculated outlet values of velocities, enthalpy, kinetic energy, and

dissipation rates were substituted as inlet conditions for the next outer iter-

ation. A l/7th power law profile was given for the axial velocity for the entire

field as an initial guess in order to accelerate convergence to a fully developed

condition. For this approach, the computation domain in Figure 3.3 was

modified such that the inlet was located at six slabs before the right end of the

first rib for the flow in a channel. The values at slab NX-I were substituted
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as the inlet conditions after eachouter iteration. For the flow betweenparallel

plates with wider ribs, the inlet was located6 slabs before the right end of the

first rib. The following boundary conditions were imposed.

outlet •

p=O

Ox
O for dp = u, v, k, ) and T

symmetry •

wall •

as
ay

- O fordp = u,v,k,)andT

u, v, k, _ = 0

constant wall heat flux or constant wall temperature

3.5.4 Jet impingement cooling

For the present numerical computations, the following boundary conditions

were used.

outlet •

symmetry •

wall •

p=O

= O ford? = u,v,k, gandT
Ox

- Of or4) = u,v,k,)andT
Or

U, v, k, g = 0

constant wall heat flux
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At the jet inlet, uniform profiles of turbulent energy, and energy dissipation

rates were

2
kin = iUin (158)

1.5
Qn = kin ] ( 2 dj ) (159)

where i is the turbulence intensity and 2 is the length scale constant. Typical

values used were 0.5% and 30% for i and 2 respectively. Fully developed

profiles of velocity, k, and e obtained from pipe solutions were also used for the

inlet condition. A schematic diagram of the computation domain is shown in

Figure 3.4.

3.6 COMPUTATION OF FRICTION FACTOR AND STANTON

NUMBER

For the flow in a channel with rectangular ribs, The average friction factor

is calculated from the pressure drop over one pitch length,

Ap
f- (160)

p, 2Ll h

The local Stanton number is defined as

St =
qw

p Ubcp( - Tb)
(161)

where
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IO! T u dy

Tb= (162)

foqUdy

The bulk temperature calculated by Eq. (162) was compared to that obtained

from an energy balance in the abrupt pipe expansion flow, and they were al-

most identical. Along the front and rear faces of the ribs, T b is taken as an

average of the values at the upstream and downstream slabs.

An average Stanton number is calculated as

Stav= qw (163)

PUbCp(T w - Tb)

where the average value of (T,- Tb)was obtained as

- Tb)dX
(164)

Tw- Tb= L

where L is the rib pitch. Use of this definition of St_ for a uniformly heated

surface may give good agreement with average Stanton numbers obtained with

a uniform temperature boundary condition, as described by Mills [95 ]. The

average Stanton number including the front and back faces of ribs was also

calculated using the entire length of the heated surface for L in Eq. (164). The

difference between the two average St was found to be less than 5% in the

present computations.
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3.7 VARIABLE PROPERTIES FLOW

The assumption of constant fluid properties is not adequate for large heat

fluxes into the fluid, since all the physical properties depend on temperature

and pressure. Fluid properties for the numerical calculation can be entered

as power law approximations. The properties for low-pressureair can be ap-

proximated within 4% in the temperature rangeof about 273K < T< 1500K.

approximated as follows [96]

u T 0.67 k T 0.805 Cp T 0.095 p Tin

_in-(--_in ) 'l_n-(--T-_in ) ' Cpi---n--(-'_'/n ) ' P-_n= 7(165)

Due to decrease in density with temperature, there is continuous acceleration

of the flow, and also another effect is the increase of the fluid resistance at the

wall with heating that causes thickening of wall boundary layer, thus reducing

the core flow area. These effects must be taken into account in evaluating the

wall shear stress. Assuming static pressure is uniform across the flow section

and treating the momentum flux as one-dimensionl, the wall shear stress be-

comes

D d(p+ pu2/2) (166)
_w=- 4 dx

In the present computation, the friction induced by the momentum change was

taken into account in calculating the average friction factor over one pitch

length.

The specific heat was taken as a constant, and average viscosity and tem-

perature ratio over the length of a pitch was taken as the average of the inlet
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and outlet values. A fixed number of inner iterations were performed with a

constant wall heat flux boundary condition, and the calculated values of ve-

locities and turbulence quantities at the outlet of the computation domain were

substituted as inlet conditions for the next outer iteration.

Supercritical hydrogen properties are strongly dependent on temperature

and pressure. Convenient curve-fits have beensuppliedby Back [97]. These

curve-fits have beenincorporated in PHOENICS and can beusedin the future

study of complexturbulent flow involving supercritical hydrogen.
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Chapter IV

RESULTS AND DISCUSSION

4.1 FLOW IN A SUDDEN PIPE EXPANSION

For the present computations, expansion ratios of 0.4 and 0.8 and a down-

stream Reynolds number range from 10570 to 76080 were chosen to study the

effect of Reynolds number and the expansion ratio on the performance of the

turbulence models. The inlet conditions were fully developed profiles for all

the variables obtained using wall function boundary conditions, except

enthalpy, which was uniform. Air was chosen as the fluid, and properties were

evaluated at 293 K. The wall heat flux used was 700W/rn 2 which was in the

range of Baughn's experiment [9]. The turbulent Prandtl number was fixed

at 0.9. A typical grid used for diD = 0.4 was NY =59 and NX=71 with 75%

of the grids located between the wall the the top of the step in the radial di-

rection.

Figure 4.1.1 shows the velocity profiles for the expansion ratio of 0.4 and

0.8. The local Nusselt number distribution normalized by the Dittus- Boelter

relation for d]D = 0.4 and Re = 12310 computed by three methods, the low-Re

model with modification by Yap, wall function method of Collins, and the

standard wall function method are shown in Figure 4.1.2a The low-Re model

predicts the overall Nusselt number distribution the best except for an under-

prediction of reattachment length. The standard wall function and the method

of Collins underpredict the maximum Nu at the reattachment point by about
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40% and 23% respectively. The heat transfer rates in the recirculation zone

are predicted better by the wall function methods,as have been reported by

other investigators.

Figure 4.1.2b showsthat the corner eddy near the step can be predicted by

the low-Re model, but the maximum wall shearstressin the recirculation re-

gion is about 2 times larger than that by the methodsof Collins. Experimental

data for the wall shear was not available, and a comparision could not be

made. The skin friction and the Nusselt number are both low near the st,;'p.

However the skin friction approachesa maximum about 5 step heights up-

stream of reattachment and declines to zero at reattachment while the Nusselt

number reaches to a maximum near the reattachment. The skin friction and

the heat transfer coefficient behave differently in a recirculating flow, and the

Reynolds analogy does not hold in a reattaching or recirculating flow. Thus,

the wall function approach of relating the flow with the wall shear stress fails

in the neigborhood of reattachment.

Figure 4.1.3 shows the predictions of local Nu distribution for Re = 23,210

and 40,750. The low-Re model overpredicts the maximum Nu of the exper-

iment data by about 25% for Re = 40,750, whereas the Collins method gives

a good prediction at the reattachment and in the recirculation region. How-

ever, the predictions by wall function methods are consistently poor in the re-

development region. The values of NUdb for Re = 12,310, 23,210, and 40,750

are 37.6, 62.4, and 97.8 respectively. Figure 4.1.4 shows the computation re-

sults by the low-Re model for Re = 10750 and diD = 0.8. For this expansion

ratio, the step height is only 20% of the pipe radius whereas for d[D= 0.4 the
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step height is 60% of the pipe radius. Also, useof the wall function boundary

conditions was not practical for this low Reynolds number, becausenot

enough grid points could be placedbelow the step if the first grid point adja-

cent to the wall was to be selectedto lie within the fully turbulent part of

boundary layer. The prediction of local Nusselt number shows a good

aggreement with the experimental data over the entire field. Figure 4.1.5

showspredictions by the three methodsfor Re = 20,130 and 39,300. The wall

function methods perform poorly for this small step height and the Reynolds

number range. Prediction for Re = 76,080 in Figure 4.1.6 shows that the

low-Re model overpredicts the maximum Nu by about 18% and again indi-

cates the need for correction at high Reynolds number.

4.2 FLOW OVER A BACKWARD-FACING STEP

Vogel and Eaton [19] have performed a detailed study of fluid flow and

heat transfer for flow over a backward-facing step. Numerical computations

have been performed to investigate the performance of the low-Re model and

the wall-function methods. The experiment of Vogel and Eaton was performed

had a development section of length 2.5rn, and transpiration was used to vary

the boundary layer thickness. For the present computations, inlet profiles for

the computations were obtained from the solution of the standard k - e model

at the end of a channel of the length of 2.5m (16.5D), and a boundary-layer

thickness of l.le was obtained, where e is the step height. The outlet was 1o-
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cated at 54edownstreamfrom the step. The expansionratio was 1.25and the

Reynolds number basedon the stepheight was 28,000.

Figure 4.2.1 shows the vector plot, and Figure 4.2.2 shows the mean veloc-

ity profiles at various nondimensional streamwise coordinates, x* =

x-x,/x, where xr is the reattachment length. Predictions by the low-Re

model and the wall function method of Collins are almost identical and are

generally in good agreement with the experimental data. Figure 4.2.3 shows

the comparison with the experimental data for the mean velocity profiles in the

near-wall region that were measured by the traversing pulsed wall probe with

two orientations. The experimental data at x* = 0.4 indicate an almost vertical

profile whereas the profile at x*= 0.33 in Figure 4.2.2 shows a gradual in-

crease of the streamwise velocity with y. There is also a discrepancy in the

data for the streamwise velocities at the reattachment point in Figure 4.2.2 and

4.2.3. The cause of this discrepancy between the two data sets is not certain.

However, comparison of the computed results with the data very close to the

wall, y < 0.2h, shows generally good agreement.

Mean temperature profiles at various streamwise locations downstream of

the step in Figure 4.2.4 show the steepest temperature gradients in the region

very close to the wall. The large temperature gradient across the shear layer

near the step far from the wall is generally well predicted by the present com-

putations. The dark markers at y = 0 indicate the wall temperatures measured

by Vogel and Eaton, and the vertical lines indicate numerical results of wall

temperatures by the two methods, for x*= -0.35, 0.05 and 0.45. The pre-

diction by the low-Re model shows closer agreement to the experimental data
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than that by the wall function method of Collins. Figure 4.2.5 shows an en-

larged plot of the mean temperature profiles at x* = - 0.95 and -0.75. The

wall temperature prediction by the low-Re model is again better than that of

wall function method, except the large overprediction by the methods very

near the step, at x" = - 0.95.

Figure 4.2.6 shows the static pressure profiles on the top and bottom walls

for Re e = 28,000 and 6[e = 1.1 . The gradual increase of the static pressure

on the top wall and the rapid increase in the bottom wall static pressqre

through reattachment to the downstream are well predicted by the present

computations. The computation by the low-Re model shows correctly the

slightly accelerating flow in the upstream near the step. Pressure recovery

downstream of reattachment is predicted better by the low-Re model than by

the wall function method.

Figure 4.2.7 shows that the computed St at the reattachment point is about

22% overpredicted by the low-Re model whereas the wall function method of

Collins gives a 13% underprediction. The temperature difference, T_- T_,

at the reattachment point was about 4°C in the data of Vogel and Eaton, and

if the reference condition is taken at 20°C, the maximum St is 0.00494 with

their condition of Uref = 11.3 m[s and q,, = 270 W[m 2. There is also a dis-

crepancy in the profile of St for 6[e = 1.1 and Re e = 28,000 in their report.

These uncertainties in the experimental data will have to be resolved. The

present computation by the wall function method gives a peak St that is 13%

lower than that reported by Collins, and the cause of this disagreement is not

certain. The wall shear stress profile in Figure 4.2.7 shows that the computa-
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tion by the low-Re model gives poor prediction in the recirculation region

whereasprediction in the redevelopingregion is much better than the wall

function method.
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4.3 FLOW IN CHANNEL WITH RECTANGULAR RIBS

Parametric studies for repeated rib roughness were performed for

e[D = 0.056

e[b = 0.67, 1

Lie= 5, 7.5, 10, 15, 20

Re = 5,200 - 41,800

Air was chosen as the fluid, and properties were evaluated at 293 K. The wall

heat flux used was 700 W [ m 2. A typical grid used for Lie = 10 was NX = 84

and NY = 74 with 60% of the grids located between the wall and the rib top.

Figure 4.3.1 shows the velocity distribution for Lie = 5, 10 , and 20 at

Re = 20,900. For Lie = 5, a large recirculation is present between the ribs and

there is no flow reattachment. Though not shown in the figures, a small

counterrotating vortex was observed in the corner behind the first rib. A large

vortex near the second rib is shown in Figure 4.3.1d, and the velocity plot

shows rapid acceleration of fluid along the front face of the rib. The static

pressure contours for L]e = 5 and 15 are shown in Figure 4.3.2. The turbulent

kinetic energy contours in Figure 4.3.3 show maxima at the sharp edge of the

second rib where flow impinges and a highly turbulent shear layer is generated.

A second maximum occurs near the flow reattachment for L]e= 10, as ob-

served in experiments.

Isotherms for Lie = 5 and 10 in Figure 4.3.4 show high temperature regions

where recirculations occur. Figure 4.3.5 shows the prediction of temperature

along the channel wall including the front and back side of the rib for Lie =
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5. The region betweenthe first two vertical markers in the figurescorresponds

to the front side of the rib, and that between the second and third markers

correspondsto the top of the rib. The temperature is the lowest at the top of

the front side of the rib where there is a flow impingement, and the highest

heat transfer coefficient is obtained. The boundary-layer developmentat the

top of the secondrib also leadsto low wall temperature, and there is a sudden

increasein temperatureat the backside of the rib. Another maximum in local

heat transfer coefficient betweenthe ribs lies closeto the secondrib where the

faster moving fluid above the ribs has penetrated. The temperature and local

St distribution along the wall for Lie = 10 are shown in Figures 4.3.6-9, and

those for L/e = 15 are shown in Figures 4.3.10-13. The figures show the

lowest wall temperature and the highest heat transfer coefficient between the

ribs at the reattachment point.

Figure 4.3.14 shows a comparison of the average friction factor with the

experimental data of Han et al. [27]. The agreement of the friction factor with

experiment is generally good, except for the underprediction of about 10% for

both L/e= 10 and 15 at Re of about 20,000. For Lie = 5 and 7.5, well con-

verged results for Re < 20,000 were difficult to obtain, and they are not pre-

sented at this point. The prediction of the average St shows fair agreement

with experimental data, except for generally low predictions. As shown in

Figure 4.3.1, a large portion of area near the wall contains velocity vectors that

are at some angle with the grid lines. Though the angles may be small, nu-

merical diffusion effects are expected to be appreciable at higher Reynolds

numbers. The heat transfer prediction is also sensitive to the details of near-
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wall flow field such asthe location and length of reattachment. Higher order

models,such asthe algebraicstressmodel, might give a superior simulation of

this complex flow. A higher order differencing scheme such as QUICK

method, may reducethe numerical error.

Prediction of the average friction factor and Stanton number with each

outer iteration are shown in Figure 4.3.15 for three cases. The averagevalues

for both f and St are stabilized after about 10 outer iterations. Figure 4.3.16

is a typical plot of local Stanton number along the tube wall after each outer

iteration. The total number of outer iterations shown is 20, and gradual con-

vergence is obtained, though the behavior is erratic.

Figure 4.3.17 shows a comparison of local Nusselt number distribution with

the experimental data of Liou and Hwang [98]. The experiment was per-

formed in a rectangular channel with an aspect ratio of 4:1, but the present

computations were performed for a 2-dimensional channel. N in the figure

indicates the index of the rib in the heated section of the channel in their ex-

periment. The comparison shows a fairly good prediction by the present re-

sults except the front and top of the rib where large overprediction occurs.

4.4 FLOW IN TUBE WITH RECTANGLAR RIBS

Computation of flow in a channel with rectangular cross section is more

appropriate in the design of a heat exchanger for active cooling, and thus the

focus of the present work was on a 2-dimensional channel. The well known

experiments by Webb et al. [26] using rectangular rib roughness were per-
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formed in a tube, with parameterswhich were very different to those in the

experiment of Han et al. [27]. The tube had a larger pitch to rib height ratio

and a smaller rib height to the channel height ratio compared to the channel

of Han et al., and thus presented a different test for the turbulence model.

This problem was actually investigated first, and is included here for com-

pleteness.

Parametric studies for repeated rib roughness were performed for

e/D = 0.02

e/b = 1

Lie=20 and 40

Re = 18,940- 56,810

The ratio of roughness height to width, e/b , was 1.94 in the experiments of

Webb et al. [26]. For the large pitch to roughness height ratio, this variation

of e/b should have negligible effect on pressure drop and overall heat transfer

rate in the fully rough regime. With the outlet at the edge of a rib, the wider

rib shape of e / b = 1.0 gave more stable numerical solutions. Air was chosen

as the fluid, and properties were evaluated at 300 K. The wall heat flux used

was700W/m 2. The typical grid used forL/e = 20 wasNY = 85, NX = 84

with 30 grids in the radial direction between the wall and rib tip.

Figure 4.4.1 show the prediction of temperature and the local Stanton

number distribution along the pipe wall for Lie = 20. Results are shown be-

tween two slabs before the first rib and the slab NX- 1 on the second rib.

Near-symmetry of wall temperature and Stanton number was obtained be-

tween the inlet and outlet. The maximum temperature occured in the corner
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of the first rib. The maximum in local Stanton number between two ribs oc-

curs at the flow reattachment point. A secondmaximum heat transfer occurs

at the sharp edge of the second rib where there is flow impingement and

boundary-layer development.

Figure 4.4.2 show a comparision of the averagefriction factor and Stanton

number with experimentaldata of Webb et.al. [26]. The agreementwith ex-

periment was generally quite good, except for the heat transfer prediction for

L [ e = 40. A stabilized heat transfer coefficient was difficult to obtain at high

Reynolds number for this pitch over roughness height ratio.
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4.5 JET IMPINGEMENT COOLING

Numerical computations were performed for turbulent axisymmetric jets

impinging on a heated fiat plate for various values of Re and H/d. The

Reynolds number was varied from 23,7.50 to 80,400, and Hid was varied from

2 to 22. The typical grid of the computation domain for Hid = 6 was 58X74

cells in the x and r directions with about 44% of the grids located within the

normal distance of one jet diameter from the impingement wall and dense grids

located around the stagnation point. The outlet was located at either 10 or 20

jet diameters downstream from the stagnation point depending on the distance

from the jet outlet to the impingement surface. Either fully developed profiles

for velocity, turbulent energy, and dissipation rates obtained from the numer-

ical solution of the turbulent flow in a pipe, or uniform profiles were used at

the jet outlet.

Figure 4..5.1 shows the velocity vector plots for H[d = 2 and 6 computed

with a low-Re turbulence model and Yap's correction. The jet grows by

entrainment of the stagnant fluid and deflects into a radial wall jet. The decay

of the jet centerlinc velocity in Figure 4.5.2a shows that the jet flow is not

much affected by the impingement wall up to about one jet diameter from the

wall. About 95% of the flow deceleration occurs within one nozzle diameter

from the wall for Hid = 6. Comparison of the jet centcrline velocity decay

with the experimental data of Giralt et al. [43] for several nozzle heights is

shown in Figure 4.5.2b. Rapid decay of the centerline velocity to zero at the

stagnation point is shown for Hid = 6.67. Computations for larger nozzle

heights show characteristics of the free jet data, and predicts correctly the in-
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fluence of the impingement wall on the oncoming flow(which extends further

upstream as the nozzle height increases). The slightly faster decay near the

impingement wall for Hid = 22 as compared to the experimental data could

be due to greater spreading rate of the free jet.

Figure 4.5.3a shows the computed results for the axial velocities, u/um plot-

ted against the nondimensional parameter, r/6 u , where 6,, is the radial dis-

tance r where u = 1/2 urn. Similar profiles at different axial locations compare

fairly well with the experimental data, except farther away from the center of

the jet, for r/6_> 1.5. The experimental data of Beltaos and Rajaratnam

E42] were found to agree well with the theoretical solution of Tollmien 1-70]

that is based on Prandtl's mixing-length hypothesis. Tollmien's solution is

known to describe accurately the velocity distribution in a two-dimensional

turbulent jet, and thus the present numerical computation seems to give fairly

good prediction of flow field in the jet development region.

The distribution of the axial velocities at various locations in Figure 4.5.3b

shows the continuous decay of the centerline velocity as the impingement wall

is approached. Though not plotted in the figure, the radial velocity near the

center of the jet is positive causing the jet to spread out, and the radial velocity

further from the center is negative and flow entrainment occurs.

Dimensionless profiles of mean radial velocities are shown in Figure 4.5.4.

Vm is the maximum velocity at each station and 6_ is the height where

V = 0.5 Izm. Comparison with experimental data of the classical wall jet ob-

tained by Schwarz and Cosart [99-1 is in good agreement except that the lo-
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cation of the maximum radial velocities are slightly underpredicted. Only

portion of the experimentaldata are plotted in the figure.

The distribution of the static pressurealong the impingement wall for H/d

= 6 is shown in Figure 4.5.5. Due to the uncertainty of the outlet condition

of the jet in the experiment by Giralt et al., two different jet outlet profiles, one

which was obtained numerically at 50 diameters downstream in a tube, and

one with uniform profiles, were employed. The uniform jet nozzle outlet con-

dition fits the experimental data more closely than the fully developed condi-

tion. Giralt et al. investigated the pressure distributions over the range 1.2

< H/d< 20 at 30,000 < Re < 80,000 and narrower distribution of the wall

static pressure was obtained with increasing jet height, for H[d< 8. They at-

tributed this to the more concentrated kinetic energy of the jet near the

centerline with more non-uniform velocity profiles at the start of the jet

impingement region. The present computations with a fixed jet height and two

different jet outlet conditions show the same trend. About 35% increase in the

wall shear stress due to probably the steeper pressure gradient for the fully

developed jet nozzle condition is shown in Figure 4.5.5b. This trend is con-

sistent with Amano and Brandt [50] whose prediction for Hid = 18 and Re

= 180,000 show 26% increase in wall shear stress when 5.5 power velocity

profile was used. Amano attributed this to the higher turbulent kinetic energy

at the edgy of the jet in the case of 5.5 power velocity profile. Figure 4.7.5b

also shows a shift in the location of the maximum shear stress toward the

stagnation point, a decrease of about 18%.

85



Comparisonwith the experimentaldata of Baltaosand Rajaratnam is made

for Hid = 21.2 and Re = 80,400 in Figure 4.5.6a. The pressure distribution

along the impingement wall show a fairly good agreement except for overall

overprediction. The radial location where the pressure is 10% of the stag-

nation pressure is at about 3.6 d compared to about i.1 d for Hid = 6 as

shown in Figure 31.a. The centerline static pressure in Figure 4.5.6b shows

good agreement with the data of Beltaos. Predictions for both Hid = 6 and

21.2 show no effect of the impingement wall on the jet up to 0.8 H dow, n-

stream. For Hid = 21.2, computation shows slightly negative static pressure

indicating that pressure in the free-jet region is below the ambient pressure.

The wall shear stress prediction in Figure 4.5.7a shows about 31% over-

prediction in the maximum shear stress, whereas good agreement is achieved

away from the stagnation region, rJH > 0.15. Comparison with more exper-

imental data is needed to resolve the discrepancy in the stagnation region.

Baltaos and Rajaratnam indicate that the error in the shear stress for r[H less

than about 0.08 could be greater than 6% due to the presence of large pressure

gradients. Prediction of the maximum radial velocity along the impingement

wall in Figure 4.5.7b shows that the peak is only about 22% of the jet outlet

velocity.

Figure 4.5.8a shows the half-width spreading rate of the round free jet for

Hid = 21.2 and Re = 74,000. Numerical results for 0.4 < x/H < 0.9 predicts

the spreading rate, dr,, ] dx, equal to 0.103, compared to 0.093 of the data of

Baltaos. Malin 1-54] reported the spreading rate of round free jet equal to

0.113 with the standard k- e model. The half-width spreading rate of the
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radial wall jet is shown in Figure 4.5.8b. The spreading rate, day/dr, for

H/d = 10 and Re = 23750 was 0.09, and that for Hid = 21.2 and Re =74000

was 0.085 over the range of 0.4 < r/H < 1.0. The combined correlation for

both Hid = 10 and 21.2 indicate the average spreading rate of 0.09, or 6v/H

is expressed as

6 v [ g = 0.0948 (r / H) 0903 (167)

Porch et al. [40] investigated turbulent radial wall jet for 8 < H [ d < 24 and

64,000 < Re < 288,000 ,and the increase of jet thickness for 0.5 < r [ H < 3

was correlated by

6 v / H = 0.098 (r / H) 09 (168)

Comparing the two correlations shows that the prediction by the low-Re model

is fairly good, and the average spreading rate of 0.9 compared to the exper-

imentally excepted value of 0.085 - 0.095 is superior to the computed value of

0.068 by the standard k - e model.

Similarity profiles for k and fly in a free let computed for H / d = 21.2 show

fair agreement with the experimental data of Wygnanski and Fiedler [-44] in

Figure 4.5.9. The _-_ profile has the maximum value at about r = 0.65 6,,

from the center of the jet where the velocity gradient 0 U / Or is the largest. The

present results are also in very close agreement with the numerical results of

the standard k - e model that was reported by Malin who computed free and

wall jets with various modifications to k - e and k - IV model. Figure 4.5.10

shows computed profiles of the turbulent kinetic energy and the turbulent
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shear stressfor H/d = 10 and 21.2 at various radial locations. Computed re-

sults of the turbulent !ntensity is underpredicted by about 17% compared to

the data of Ng [100], but Malin points out that the data of Ng cannot be re-

garded as definitive, and that Poreh et al. measured a peak intensity of

k 112/ U m --- 0.35. (The experimental data of Ng was reproduced from the pa-

per of Malin due to unavailability of Ng's thesis at present). The predicted

profiles for H [ d = 10 is very close to the numerical results of the standard

k - _ model that was reported by Malin, except that the present computatl,on

of fi-q with the low-Re model gives up to 20% improvement near the wall,

x _< 0.5 6v. In the case of the radial wall jet, the similarity profiles for k and

u%= are not quite obtained for x > 0.5 6_, and since only one computed profile

for each case is given from Malin, it was not possible to compare the degree

of similarity. However, the experimental data of Poreh et al. show scatter in

measurement of both k and u-f, and they summarized that it was difficult to

conclude from the data whether the turbulent shear stress in the wall jet is

similar.

Figure 4.5.11 shows the Nusselt number profile for HI d = 2, 6, I0, 14, and

Re = 23,750. The outlet profiles for the jet were obtained from the numerical

solution from a pipe with the length of 72 diameters to simulate the exper-

imental condition. Comparison with the experimental data of Baughn and

Shimizu shows poor agreement near the stagnation point, as much as 56%

overprediction for H[d = 6. In the case ofH[d = 2, the minimum Nuat

r [ d of about 2 are well produced by the computation. The predicted profiles

are in good agreement with the data for the downstream region. Figure 4.5.13
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and 4.5.14 show the results when the extra source term in the E equation is

damped more than in the origional proposal of Yap. The predicted profiles

of the local Nu show significant improvements except for the absence of the

second peak for H/d = 2. The extra source term had to be about 1.6 to 6

times larger depending on H/d. More detailed investigation is needed to

produce the necessary correction term to improve the heat transfer prediction

in the vicinity of the stagnation point.
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4.6 VARIABLE PROPERTIES CHANNEL FLOW USING THE

LOW-RE MODEL

The effect of variable properties on heat transfer augmented by ribs in

channel flow can be deduced from empirical equations, such as that of Vilemas

and Simonis [38-1,

Nu b = 0.029 Re2 "84 Pr2 "6 (-_b )n (169)

where n depends on geometry and Reynolds number, and is given by Eq.(29).

Thus

O.16 T w n

St b o<: lab [-_b )
; n < 0 (170)

With heating lao increases and TJT b decreases in the axial direction, thus both

terms contribute to the increase of St b along the channel.

The friction factor for flow over sand-grain roughness is known to be func-

tion of geometry only, and independent of Reynolds number in the fully rough

regime where form drag is the dominant mechanism. But, the friction factor

for flow over repeated-rib roughness involves more geometric parameters,

namely the height of roughness e, the width of the roughness w, and the pitch

of roughness elements L. For widely spaced ribs, the flow reattaches behind

each rib, and a viscous layer grows. This viscosity dependent shear stress

should be dominant as Lie approaches infinity.

performed experiments with water flow in a

roughness.

Savage and Myers [101]

tube with rectangular rib

They investigated the contribution of form drag to the total forces
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retarding flow for different roughness configurations and Reynolds numbers.

For L/e= 1, the total pressure drop was entirely due to a skin-friction effect.

The relative contribution of skin friction decreased almost linearly as L/e in-

creased and appeared to pass through a minimum at about L/e = 13. For

e/D = 0.04 and Re = l0 s, the minimal contribution of skin friction was 30 %

of the total retarding force at Lie" I0. For the repeated-rib roughness, it

seems that form drag may not be the dominant mechanism and skin friction

may not be negligible, depending on the spacing of ribs. Consequently *,he

friction factor may depend on viscosity in a variable properties flow even

though the equivalent sandgrain roughness indicates the fully rough regime.

The variation of friction factor downstream along the channel wall may be

difficult to correlate since the relative contribution of skin friction depends on

the rib spacing.

As a preliminary study, a channel with L/e = 1.5 , e/D = 0.056 was chosen

to observe the effect of variable physical properties. The low-Re model with

the Yap's modification was employed. The inlet Reynolds number was varied

from 11,500 to 20,000, and the calculated temperature ratio, TJTb, was be-

tween 1.42 and 1.88. Pr and cp were assumed constant for these initial calcu-

lations. Iterations were performed until a stabilized value of friction factor and

Stanton number were obtained. In the present computation, the calculated

variables at the outlet after an outer iteration were substituted as inlet condi-

tions for the next outer iteration. Thus, the temperature level is increasing in

the computation domain for successive outer iterations, and the process is very

similar to marching in the flow direction. A slight increase in f and St were
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observed in the course of iteration at high heat fluxes, and it is suspected that

the heat transfer coefficient may not have stabilized due to flow laminarization

in this low Reynolds number range.

Figure 4.6.1 shows a plot off/re versus TJT b for Re = 10,000 and 15,000,

where f_ is the constant property value. The Reynolds number is an average

value calculated with bulk properties over a pitch. The present calculation

shows about 13% and 21% reduction in fat Re = 15,000 and 10,000 respec-

tively, when the air was heated to about T_, [T b = 1.7. The results also shQw

an increase in fwith increasing Re, and the effect of Re onfseems not negli-

gible. The experimental data of Vilemas and Simonis [-38] showed a large ef-

fect of temperature ratio on friction at low range of Re but smaller effect of

Re on friction. They found a 20% decrease in fin the Reynolds number range

of 10,000 to 20,000 when the channel was heated to Tw/To = 1.8 from an

adiabatic flow condition. The effect of Reynolds number on f was negligible

for heating up to Tw/Tb = 1.8 in the range of Reynolds number less than about

60,000. However the data for the influence of temperature ratio on friction is

for one channel only (e[D = 0.013, Lie = 9.5), and the effect of the parameter

e/d e could not be discerned. The friction factor measured in the experiment

of Vilemas and Simonis was the overall friction factor with an outer smooth

wall and inner rough wall, whereas the present computation is performed with

the both walls of identical roughness. Thus an exact comparison cannot be

made. The channel of the present computation also has much larger pitch to

roughness height ratio than the test section of Vilemas and Simonis, and the

ratio of the roughness height to the channel height of flow passage is about
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11% compared to only 2.6% in the experiment. Thus, the channel of the

present study has larger flow recirculation and redeveloped region than the

experimental setup.

Figure 4.6.2 shows the plot of St/St c versus T_ / T b. There is about 5% re-

duction in heat transfer rate for both Re = 10,000 and 15,000 when the air is

heated to T_/ T a-_ 1.7. There is no apparent effect of Reynolds number on

heat transfer for the small range of Reynolds number in the present computa-

tion. This seems to be supported by the experimental results of Vilemas a'_d

Simonis which show only about 5% difference in Nu [ Nu c from Re = 11,000

to 31,000 when the air was heated to T_/ T a-_ 1.7. However, their results

show a large reduction in heat transfer with heating in the low Reynolds

number range: about 19% at Re = 11,000 when the gas was heated to

T w / Tb --- 1.7. More computations need to be performed in order to investigate

the effect of Reynolds number and the parameter e/D e.

4.7 VARIABLE PROPERTIES FLOW WITH WALL FUNCTIONS

In the present computations, Pr and cp are assumed constant, and p and/_

are assumed to vary as

# T 0.67 P Tin (171)
_in -- ('-_/n) ' Pi--'n- = "--T"

The wall function approach for variable properties flow described in section

2.2.5 was used to calculate the flow in channel with ribs, and the prediction

of heat transfer showed opposite trend with heating: an increase of heat
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transfer with temperature. As stated by Viegas and Rubesin, it seemsthat

improvements in eddy viscosity modeling and careful consideration of the

mean valuesof velocity and temperature in the first meshvolume are required

in caseof large wall heat fluxes. But, more importantly it seemsthat the in-

creaseof the viscous sublayer with heating should be incorporated into the

Ciofalo and Collins approach. The proposed approach is to include the tem-

perature ratio in caseof variable properties flow as below.

fv+o k1/%] \ Tbj

where ¢e a'nd Yvo are the turbulence intensity and the non-dimensional sublayer

thickness respectively in the equilibrium boundary layer, and a and b are em-

pirical constants. This modification will make the P - function in the law of

the wall for temperature a function of heating. Even though, this is possible

with experimental data of variable properties flow, it would be similar to the

derivation of the standard wall functions. Another drawback of the wall

function approach was an inability to predict the recirculation zone at the top

of the forward-facing rib, causing a low pressure zone above the rib which in

turn gave a larger overall pressure drop.

Though this is less important, a possible improvement over Eq. (97) would

be to adopt Amano's approach of evaluating the production and destruction

terms in the _ equation, taking into account the variation of k in the near wall

layer. A simpler approach would be to use Eq. (95) as a mean value. These

possible improvements need to be further investigated.
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4.8 EFFECT OF WALL THERMAL BOUNDARY CONDITIONS.

The computations presented were all performed with a constant wall heat

flux boundary condition to correspond with the majority of the experiments

that were used for comparison purposes. Subsequently flow in a channel with

transverse rectangular ribs was solved with a constant wall temperature

boundary condition, and an approximately four-fold increase of heat transfer

coefficient at the top edge of the forward-facing rib was found. In the recir-

culating region behind the rib, the prediction of heat transfer was comparable

with that for a constant wall heat flux boundary condition.

In order to investigate this unexpected results further, a simpler problem

was chosen, namely a laminar flow over a forward-facing step. Figure 4.8.1

shows a velocity field for Re = 550 and e/H = 0.13. The grid employed was

52x28 with 10 grid nodes placed below the step. Figure 4.8.2 shows the local

Nusselt number distributions along the channel wall including the front face

of the step. For the both boundary conditions, the Nusselt number reaches a

minimum in the corner of the step, and there is a gradual increase in Nusselt

number along the front face of the step reaching a maximum on the top of the

step. For a constant T_,, the minimum is much smaller and the maximum

much larger(2 times) than for a constant q_ boundary condition.

Grid refinement tests are shown in Figure 4.8.3 for four different grid ar-

rangements. The solutions are practically identical for all cases except for the

overprediction of heat transfer coefficient on the top of the step with the grid

of 40x20. The prediction over the face of the step is invariant for all the grid

arrangements.
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Isotherms for the both wall boundary conditions are plotted in Figure 4.8.4

where the scale of y coordinate has been enlarged to have a better view of

temperature profiles below the step. The temperature contour has been plotted

from the inlet to the forward-facing step, and from the wall to the top of the

step only. The solution with the constant wall temperature boundary condi-

tion produces a steeper temperature gradients along the front face of the rib

compared to that with wall heat flux boundary condition. In the corner of the

step, the velocity of fluid is very small. Thus the fluid next to the wall retaifls

a temperature very close to the wall temperature in the case of constant T_,

boundary condition, and the fluid acts as an insulating layer. This leads to the

very low heat transfer coefficient in the corner of the step as shown in Figure

4.8.2. The constant qw boundary condition establishes wall temperature gra-

dient along the face of the step, and this leads to steeper temperature gradient

of fluid layer along the step wall, and subsequently higher heat transfer coef-

ficient in the corner of the step than that for the constant T_ boundary condi-

tion. Whereas the wall temperature at the top of the step for the constant q_

boundary condition has cooled to about 80% of the wall temperature at the

base of the step, the wall temperature along the front face of the step for the

constant Tw boundary condition is fixed at a constant value. This effect seems

to be similar to the entrance region problem where the temperature gradient

at the wall is theoretically infinite. In fact, the temperature gradient at the top

edge of the step is almost identical to that at the wall of the second slab from

the entrance in the present computation domain. These effect of wall bound-
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ary conditions on heat transfer wasnot observedin either abrupt pipe expan-

sion flow or in jet impingementcooling.
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Chapter V

CONCLUSIONS

5.1 OVERALL CONCLUSIONS

The flow downstream of a sudden pipe expansion and over a backward-

facing step were solved with both high and low Reynolds number k - e model.

The standard wall function method proved to be inadequate in the calculatibn

of heat transfer rates for flow with reattachment. The wall function approach

of Ciofalo and Collins that relates the viscous sublayer thickness to the near-

wall turbulence intensity gave better heat transfer prediction than the standard

approach, but the overall performance was poor. The best prediction of heat

transfer was obtained with the Yap modified Jones and Launder low Reynolds

number k- e model.

The large part of computations were performed on two elliptic flows: the

flow in a channel with rectangular transverse ribs and jet impingement on a

fiat plate. The objectives were the application of turbulence models to these

flows to facilitate the design of active cooling in hypersonic flight, and further

improvement in the turbulence model for better prediction of heat transfer.

A simple periodicity boundary condition was used to compute the fully de-

veloped flow in a channel with repeated rib roughness. The low-Reynolds

number k - _ model with Yap's modification gave an adequate agreement with

experiment for constant property flow. The results for average heat transfer

rates were generally lower than the experimental data. For jet impingement
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cooling, there were overprediction of heat transfer rates in the neighborhood

of reattachment, and modification to the extra source term in the dissipation

rate equation was required.

Investigation of the variable property flow in a channel with ribs with the

same turbulence model showed reduction in both friction and average heat

transfer rateswith heating. The effect of Reynolds number on the friction was

not negligible in contrast to heat transfer rates. The computation domain of

the present study was different from the test section of the experiment, and

exact conclusioncould not bemade. The wall function method was modified

to account for the effect of variable propertieswith non-adiabatic surface,and

results showedthat a further near-wall modelling is required to incorporate the

increaseof the viscoussublayerwith heating.

There was a large increasein heat transfer rate at the top edgeof the rib

when the wall boundary condition was changedto constant wall temperature

from constant wall heat flux. A laminar flow over a forward-facing step was

chosen to further investigate the effect of wall thermal boundary condition.

The Nusselt number at the edge of the step for the constant T_ boundary

condition was about two times higher than that for the constant qw boundary

condition.
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5.2 RECOMMENDATIONS

Various turbulence models have been shown to perform fairly well in pre-

diction of mean flow by many investigators, but there needs to be a more in-

tensive investigation to improve the turbulence models for better prediction of

heat transfer in complex flows. More experimental measurements of turbu-

lence quantities and heat transfer rates are needed especially for the stagnation

point region of the jet impingement flow, and for variable property flow with

heating. These will facilitate for better modelling of turbulence models.
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Figure 4.1.1 Velocity profiles for (a) d]D= 0.4, Re = 12,310 (b) diD = 0.8,
Re = 20,130.
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Figure 4.2.1 Vector plot for flow over a backward-facing step. expansion

ratio= 1.25. Re e = 28,000.
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Figure 4.3.1 Vector plots for flow in a channel with ribs for Re = 20,900.

(a) Lie = 5, (b) L/e = 10. (c) L/e = 20.
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Figure 4.3.3 Turbulent kinetic energy contour for Re = 20,900. (a) L/e =
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Figure 4.8.1 Velocity field for laminar flow over a forward-facing step. Re
= 550.
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